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NOTE GENERALI
• Mauro Spera è nato a Roma il 10/2/1958.
• Si è immatricolato presso l’Università degli Studi di Roma (oggi “La Sapienza”) nell’anno

accademico 1977/78, Corso di Laurea in Matematica ed è stato borsista laureando del C.N.R. dal
settembre 1980 al luglio 1981.
• Si è laureato con lode il 14/7/1981 discutendo la tesi Alcune rappresentazioni dell’algebra del

campo di Dirac libero di massa zero. Relatore il Chiar.mo Prof. S. Doplicher.
• È stato borsista presso l’Istituto Nazionale di Alta Matematica (I.N.D.A.M.)

Francesco Severi durante gli anni accademici 1981/82 e 1982/83.
• È risultato vincitore, nel settembre 1983, di un Concorso Libero per Ricercatore ex gruppo 90 (ed

ex MAT/05), ANALISI MATEMATICA (sottosettore: Analisi Funzionale) presso la II Università
di Roma “Tor Vergata”, Facoltà di Ingegneria, prendendo ivi servizio il 19/7/1984 e afferendo al
Dipartimento di Matematica.
• Ha svolto il servizio militare dal 14/12/1984 al 27/11/1985.
• Dal settembre 1986 al maggio 1987 è stato borsista C.N.R. per l’estero presso l’Università di

Warwick (Coventry, UK).
• Il 26/4/1989 si è trasferito presso la Facoltà di Ingegneria dell’Università degli Studi di Padova,

afferendo al Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate.
• Ha ottenuto il giudizio di conferma in ruolo con decorrenza 16/7/1988.
• È stato recensore per Mathematical Reviews e Zentralblatt MATH.
• È stato visitatore presso il Dipartimento di Matematica dell’Università L. Pasteur di Strasburgo

nell’aprile-maggio 1994, giugno 1995, aprile-maggio 1996, novembre-dicembre 2000, e il LMAM
dell’Università P. Verlaine di Metz (FR), marzo e ottobre 2002, ottobre e dicembre 2004, maggio e
giugno 2006, giugno e ottobre 2007, giugno 2009, febbraio e maggio 2010.
• Ha usufruito del programma RiP (Research in Pairs) della Volkswagen-Stiftung presso il Math-

ematisches Forschungsinstitut Oberwolfach (D) per tre settimane nell’aprile 1997.
• Dal 10 novembre 1999 è professore associato s.s.d. MAT/03 Geometria (ex A01C)

GEOMETRIA presso la Facoltà di Ingegneria dell’Università di Padova. È stato confermato nel
ruolo con decorrenza 10 novembre 2002; vi è rimasto fino al 21/12/2006.
• Dal 22 dicembre 2006 è in servizio presso l’Università di Verona Facoltà di Scienze MM. FF.

NN., afferendo al Dipartimento di Informatica.
• Interagisce con numerosi studiosi di prestigio e ha partecipato a numerosi convegni scientifici

nazionali e internazionali.
• Afferisce al GNSAGA dal 1999, sez.1 Geometria Differenziale.
• Dal 2003 al 2008 è stato Associate Editor della rivista Journal of Geometry and Symmetry in

Physics.
• Ha curato e cura lo svolgimento di tesi di laurea e di dottorato, svolgendo funzione di avviamento

alla ricerca (v. in particolare i lavori [31],[34],[35],[37]).
• Il lavoro [33] dell’elenco allegato (in collaborazione con T. Wurzbacher) ha ottenuto il giudizio

CIVR 2006: “eccellente”.
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FORMAZIONE
La formazione universitaria di M.S. è essenzialmente analitico-funzionale e fisico-matematica

(quantistica). La frequenza ai corsi di Perugia, Cortona, e INDAM (v.oltre) gli ha permesso di
ampliare la propria cultura di base soprattutto nei settori della geometria differenziale e analitica e
dei metodi geometrici della meccanica classica, nonché della topologia algebrica e differenziale, della
geometria algebrica e dell’analisi armonica. Tali studi hanno inciso profondamente sulla sua ricerca
scientifica successiva.
* Luglio-Agosto 1981 Corsi estivi di Perugia: Geometria Differenziale (Prof. T.J. Willmore),
Equazioni Differenziali della Fisica Matematica (Prof. P. Bassanini). A questi si aggiungono due
corsi di richiamo: Geometria Differenziale (Prof. T.J. Willmore e F. Tricerri (1982)) e Topologia
Algebrica (Prof. J. Cohen e C. Gagliardi (1982)).
* Ottobre 1981 Risulta vincitore di una borsa INDAM, di cui usufruisce nell’a.a.1981/82 presso
l’Istituto S. Pincherle (Bologna) e che gli verrà rinnovata per l’anno successivo grazie all’esito positivo
del colloquio previsto dal bando.

Corsi seguiti come borsista I.N.D.A.M.
1o anno
ALGEBRA COMMUTATIVA (Prof. A. Valla)
GEOMETRIA DIFFERENZIALE (Prof. I. Cattaneo Gasparini)
TOPOLOGIA DIFFERENZIALE (Prof. M. Ferri)
ANALISI ARMONICA (Prof. F. Ricci)
ANALISI COMPLESSA (Prof. V. Villani)
GEOMETRIA ALGEBRICA (Prof. F. Gherardelli)
2o anno
ANALISI COMPLESSA (Prof. P. De Bartolomeis)
ANALISI FUNZIONALE (Prof. A. Ambrosetti)
METODI MATEMATICI DELLA MECCANICA CLASSICA (Prof. F. Magri)
EQUAZIONI DIFFERENZIALI ORDINARIE (Prof. R. Conti)
GEOMETRIA ALGEBRICA (Prof. F. Catanese)
GEOMETRIA DIFFERENZIALE (Prof. F. Tricerri)

* Luglio 1983 Corso estivo di Geometria Differenziale a Cortona (Prof. F. Tricerri e J.C. Wood),
seguito da un corso di richiamo tenutosi a Trento nel maggio 1984.

PARTECIPAZIONE A CONGRESSI
* Settembre 1981 Convegno GNAFA, Rimini (comunicazione).
* Settembre 1982 “International Workshop on Quantum Probability”
(Prof. L. Accardi, A. Frigerio, V. Gorini) (conferenza)(v.[3]).
* Settembre 1983 “International Workshop on Homogeneous Spaces”, Torino (Prof. F. Fava e

F. Tricerri).
* Ottobre 1983 Convegno “Geometria degli Spazi di Banach”, Milano, (Prof. S. Massa, D.

Roux, P. Soardi)(comunicazione)
* Settembre 1984 Convegno “Geometria delle varietà differenziabili” Roma (Prof. I. Cattaneo

Gasparini).
* Settembre 1984 IV Coloquio Internacional de Geometria Diferencial, Santiago de Compostela

(Prof. L. Cordero).
* Ottobre 1984 “II Workshop on Quantum Probability and Applications”, Heidelberg (Prof.

L. Accardi, W. von Waldenfels) (conferenza)(v.[4]).
* Luglio 1986 “IAMP Congress on Mathematical Physics”, Marseille (poster (v.[5]))
* Ottobre 1986 “Informal Opening Workshop on Operator Algebras” University of Warwick

(Prof. D.E. Evans).
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* Febbraio 1987 “X Statistical Mechanics Conference (The Open University, Milton Keynes)
(Prof. A. Solomon) (v.[6]).

* Marzo 1987 “Workshop on Operator Algebras and Mathematical Physics” University of
Warwick (Prof. D.E. Evans).

* Aprile 1987 “Workshop on Cyclic Cohomology and K-theory University of Warwick (Prof.
J.D.S. Jones).

* Settembre 1987 XIII Congresso UMI (Torino) (comunicazione).
* Luglio 1988 “IAMP Congress on Mathematical Physics”, Swansea (due poster).
* Settembre 1988 “Workshop on Differential Geometry and Topology” , Cala Gonone (Prof.

R.Caddeo e F.Tricerri) (conferenza, v.[8]).
* Dicembre 1988 “College on Global Geometric and Topological Methods in Analysis (ICTP

Trieste) (Prof. S. Buoncristiano, S.K. Donaldson, S. Gitler,
J.D.S. Jones) in cui è Assistant Lecturer e tiene seminari complementari al corso Yang-Mills Fields
in Differential Geometry del Prof. Jones.

*Giugno 1990 “XIX Conference on Differential Geometric Methods in Theoretical Physics”,
Rapallo (poster).

*Giugno 1990 “Workshop on Twistor Geometry” (Prof. P. de Bartolomeis, G. Tomassini e F.
Tricerri)(comunicazione).

*Marzo 1991 “Metodi Topologici e non perturbativi in teoria dei campi e in meccanica statis-
tica”, Bari (comunicazione).

*Giugno 1991 European Research Conference on “Advanced Quantum Field Theory and Crit-
ical Phenomena” (Prof. M. Rasetti e M. Martellini), Como (conferenza, v.[16])

*Settembre 1991 XIV Congresso UMI, Catania (due comunicazioni).
*Luglio 1992 “XI Workshop on Geometric Methods in Physics”, Bialowieza, Polonia (Prof. A.

Odjiewicz, S.T. Ali, I. Mladenov)(conferenza, v.[20]).
*Giugno 1993 “Workshop on Geometrical and Topological Methods in Physics”, Lione
(Prof. C. Roger) (poster).
*Luglio 1993 “XII Workshop on Geometric Methods in Physics”, Bialowieza (Prof. A. Odjiewicz,

S.T. Ali, I. Mladenov) (conferenza, v.[22]).
*Giugno 1994 “Journees Mathématiques de Strasbourg” (L’espace des lacets).
*Agosto 1994 ICM, Zurigo (poster).
*Maggio 1995 “Conference in Non Commutative Differential Geometry and Its Applications”,

Trest (Rep. Ceca)(poster)
*Luglio 1995 “Workshop on Classical and Quantum Gravity” (Sintra, Portugal) (J. Mourao, R.

Picken) (seminario, v.[24])
*Settembre 1995 XV Congresso UMI, Padova (comunicazione).
*Novembre 1995 È invitato ad Oberwolfach per un seminario della DMV su “Infinite Dimensional

Kähler Manifolds” (cui alla fine non potrà partecipare per malattia). In tale seminario sono stati
discussi anche i suoi contributi alla teoria della Grassmanniana di Sato-Segal-Wilson.

*Luglio 1996 “XV Workshop on Geometric Methods in Physics”, Bialowieza (Prof. A.Odjiewicz,
S.T.Ali) (conferenza).

*Settembre 1996 “Workshop on Algebraic Geometry and Physics”, SISSA (conferenza).
*Aprile 1997 Programma RiP (Research in Pairs) della Volkswagen-Stiftung presso il Mathe-

matisches Forschungsinstitut Oberwolfach.
*Giugno 1998 RiP Workshop “Determinant Line Bundles: confronting different perspectives”

Oberwolfach (D)(S. Paycha, T. Wurzbacher) (conferenza)
*Ottobre 1998 SINTESI Workshop (Torino, Villa Gualino), (T.Regge,V.Penna)

(due conferenze).
*Settembre 1999 È conferenziere invitato al convegno “Geometry, Integrability ad Quantiza-

tion” (Varna, Bulgaria) ma non può partecipare per grave malattia.
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*Giugno 2000 Workshop “Geometry of families of operators, Families of geometric operators”
CIRM (Luminy,FR) (S. Paycha, T. Wurzbacher) (conferenza)

*Settembre 2000 “IX Oporto Meeting on geometry, Topology and Physics” (Oporto, Portugal)
(J.N.Tavares, J. Mourao, R. Picken) (comunicazione di 30 minuti)

*Marzo 2002 Workshop “Topics in conformal field theory and topology”, Münster (D)(S. Stolz,
P.T eichner, W. Lück)

*Luglio 2003 Workshop “Categorification and Higher Order Geometry” Lisbona (M. Mackay e
R. Picken) (conferenza)

*Settembre 2003 Congresso UMI, Milano (comunicazione)
*Novembre 2003 “Monodromy Workshop”, Atene (B. Zhilinski, A. Sadovskji,

K. Efstadiou) (conferenza)
*Giugno 2004 Petit groupe de travail: Géométrie de l’indice et théorie des champs, CIRM (Lu-

miny, FR) (S. Paycha, S. Rosenberg) (conferenza).
*Giugno 2004 Convegno “Trends in Geometry - In memory of Beniamino Segre”.
*Giugno 2007 Joint meeting UMI-DMV Perugia (conferenza).
*Novembre 2007 Inaugural Meeting of the GREFI-GENCO
*Giugno 2008 Convegno Analysis and Topology in Interaction (Cortona) [chairman per una sessione].
*Aprile 2009 Convegno ”150 years of RH” Verbania (E. Bombieri et al.)
*Maggio 2009 Conference on Knot Theory and its Applications to Physics and Biology, (S. Jablan,
L.H. Kauffman, S. Lambropoulou, J. Przytycki. Local organizer: Li Jiayu) (conferenza su invito).
*Luglio 2009 XVIIIth Oporto Meeting on Geometry Topology and Physics (comunicazione).
*Settembre 2009 Three days on Mathematical Models of Quantum fluids: Geometrical, Analytical
and Computational Aspects, Verona, 14-17 settembre 2009 (M. Caliari, L.M. Morato, M.S., S.
Zuccher), conferenza e tavola rotonda.
*Giugno 2010 XXIX Workshop on Geometric Methods in Physics, Bialowieza, Poland (comuni-
cazione).
*Febbraio 2011 Higher gauge theories,TQFT and Quantum Gravity, (R. Picken and J. Morton),
Lisbon, PT (comunicazione).
*Maggio 2011- Luglio 2011 Intensive Research Period : Knots and Applications (R. Ricca); attività
svolte:
• Pedagogical School on Knots and Links: from Theory to Applications: svolto su invito un ciclo di
6 lezioni su: Differential Geometric Aspects of Linking and Braiding
• Workshop “Entanglement and Linking” (organizzatore e conferenziere: ”Differential geometric
aspects of higher order linking numbers”)
•Workshop “Braids and Applications” (M. Berger) (conferenziere invitato: ”Low-dimensional Pure
Braid Group Representations Via Nilpotent Flat Connections”)

Partecipazione a parte del convegno ESF-ERCOM: Knots and Links: from Form to Function (R.
Ricca)
* Giugno 2011 XIII Workshop on Geometry, Integrability and Quantization (I. Mladenov, G.Vilasi,
A. Yoshioka), Varna (Bulgaria). Ciclo di 5 conferenze su “Geometric Methods in Quantum Mechan-
ics”.

* M.S. è stato invitato a tenere una comunicazione di 30 minuti “International Colloquium on
Group Theoretical Methods in Physics” (Group 29 Colloquium) al Chern Institute of Mathematics,
Nankai University, Tianjin, China (August 20 - 26, 2012), sessione “General quantum mechanics
and spacetime structure, symmetry and topology”.

4



SEMINARI
*Novembre 1984 Rappresentazioni infrarosse delle CCR e delle CAR (Prof. L. Accardi, Roma

II)
*Dicembre 1984 Struttura matematica delle teorie di gauge (Colloquium, Roma II)
*Gennaio-Maggio 1987 Seminari presso le Università di Warwick (Prof. D.E. Evans) Oxford

(Prof. K. Hannabuss) e Nottingham (Prof. R. Hudson e D. Applebaum).
*Giugno-Luglio 1987 Seminari di introduzione alla geometria differenziale non commutativa e

sul gruppo di Heisenberg e le funzioni theta (Prof. L. Accardi).
*Novembre 1987 Il problema di YM in geometria differenziale non commutativa (Prof. R.

Longo, Roma II).
*Dicembre 1987 Il gruppo di Heisenberg e le funzioni theta (Prof. M. Rasetti, Politecnico di

Torino).
*Gennaio-Febbraio 1988 Teoria di Yang Mills classica (Prof. C. De Concini,

Roma II).
*Aprile-Maggio 1988 Yang Mills e strutture olomorfe in geometria differenziale non commuta-

tiva (Prof. S. Doplicher, Roma I e A. Chiffi, Padova).
*Dicembre 1988 Seminari all’ICTP, già citati.
*Marzo 1990 Ciclo di seminari sulla Quantizzazione geometrica e Applicazioni (Prof. G.

Zampieri, Padova)
*Giugno 1990 Minicorso per la Scuola di Analisi Matematica Introduzione alla Geometria

Differenziale Non Commutativa (Prof. E. Gonzalez, Padova).
*Giugno 1991 Approccio simplettico alla teoria di Yang Mills non commutativa (Prof. L.

Accardi, Roma II).
*Giugno 1993 Geometria della Grassmanniana Hilbertiana (Prof. R. Longo, Roma II).
*Aprile 1994 Seminari presso l’IRMA, Strasbourg (Prof.T. Wurzbacher)
*Maggio 1995 Seminario presso l’IRMA, Strasbourg (Prof. T.Wurzbacher)
*Giugno 1995 Seminario informale presso il DMMMSA, Padova.
*Aprile-Maggio 1996 Ciclo di seminari presso l’IRMA, Strasbourg.

(Prof.T.Wurzbacher)
*Febbraio 2000 Seminario presso il Dipartimento di Matematica dell’Università di Tor Vergata

(Prof. M. Abate).
*Ottobre 2000 Seminario presso il Dipartimento di Matematica dell’Università di Milano (Prof.

A. Lanteri).
*Ottobre 2002 Seminario presso il Dipartimento di Matematica dell’Università di Metz
(Prof. T. Wurzbacher).
*Novembre 2003 Seminario presso Dipartimento di Matematica dell’Università di Brescia
nell’ambito delle “Giornate di Geometria” ((Prof.sse E. Zizioli e S. Pianta).
*Marzo 2004 Seminario presso il Dipartimento di Matematica e Fisica dell’Università Cattolica,

sede di Brescia (Prof.ssa S. Pianta), nell’ambito degli “Incontri di Geometria e Fisica”.
*Ottobre 2004 Seminario presso il Dipartimento di Matematica dell’Università di Metz
(Prof. T. Wurzbacher).
*Novembre 2004 Seminario presso il Dipartimento di Matematica dell’Università di Milano

(Prof. G. Gaeta).
*Novembre 2004 Seminario presso il Dipartimento di Matematica Pura e Applicata dell’Università

di Padova (Prof. F. Cardin).
*Maggio 2005 Seminario presso il Dipartimento di Matematica dell’Università di Milano-

Bicocca (Prof. R. Ricca) (cf. il lavoro [35], scritto su invito del Seminario Matematico e Fisico
di Milano).

*Dicembre 2006 Seminario presso la Facoltà di Scienze dell’Università di Verona
(Prof. R. Giacobazzi).
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*Marzo 2009 Seminario presso il Dipartimento di Matematica e Fisica dell’Università Cattolica,
sede di Brescia (Prof.ssa S. Pianta).

*Settembre 2010 Seminario presso il Dipartimento di Matematica della Ruhr-Universität Bochum
(D) (Prof. T. Wurzbacher)

*Febbraio 2011 Seminario presso il Dipartimento di Matematica della Ruhr-Universität Bochum
(D) (Prof.T. Wurzbacher)

ATTIVITA’ SCIENTIFICA
La produzione scientifica di M.S. si colloca in massima parte nell’ambito della geometria dif-

ferenziale, soprattutto in contesti infinito-dimensionali diversi, ma ricchi di legami reciproci. Ciò
ha richiesto un massiccio uso di strumenti analitico-funzionali (in parte originali). Inoltre, si è fatto
largo uso di strumenti appartenenti a diverse branche della geometria (simplettica, algebrica) e della
topologia algebrica. Considerazioni di natura fisico-matematica hanno avuto spesso un’importante
funzione euristica per intuire alcuni risultati puramente geometrici. Viceversa, numerose sono state
le applicazioni fisico-matematiche di concetti geometrici.

Di seguito si enumerano i vari filoni di ricerca:
• Geometria differenziale e algebrica della Grassmanniana Hilbertiana e dei gruppi

e degli spazi di cappi; operatore di Dirac-Ramond
([17],[21],[22],[24],[25],[29],[33],[38],[41],[47])
• Geometria differenziale non commutativa (problema di Yang-Mills e altri argo-

menti)
([8],[13],[15],[19],[31])
• Orbite critiche del quadrato dell’applicazione momento associata and una rappre-

sentazione irriducibile di un gruppo di Lie semplice
([18])
• Descrizione geometrico differenziale della serie centrale inferiore del gruppo fonda-

mentale di un allacciamento (link) in termini di connessioni di Chen. Link Brunniani
([10],[12],[16],[30],[32],[35],[36])
• Costruzione geometrico-differenziale di rappresentazioni del gruppo di Heisenberg

([5])

Accanto a tali contributi alla geometria M.S. ha sviluppato le seguenti applicazioni
fisico-matematiche della stessa per lo più nell’ambito della quantizzazione geometrica:
• Teoria quantistica dei vortici e invarianti di allacciamenti (links)

([10],[12],[16],[26],[27],[30],[32],[35],[36])
• Principio di indeterminazione generalizzato e proprietà degli stati coerenti. Mec-

canica quantistica geometrica. Monodromia.
([18],[28],[34],[37],[39],[40])
• Problema di Keplero

([7])
• Ciclo di Maslov e applicazioni (materiali iperelastici, nodi)

([23],[35],[36])
• Questioni connesse alla geometria non commutativa,
relatività generale

([11],[31],[47])
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Segnaliamo il seguente filone recente:
• Applicazioni della geometria alla visione computazionale

([42],[47])
Infine, segnaliamo il filone originario dell’attività di ricerca di M.S.
• Teoria C∗-algebrica dei campi quantizzati

[1-4]
Quest’ultimo filone non è propriamente geometrico, ma le idee e le tecniche qui utilizzate hanno

trovato importanti applicazioni geometriche (Grassmanniana di Sato-Segal-Wilson, indice equivari-
ante sullo spazio dei cappi di Rn e generalizzazioni).

M.S. ha interagito e interagisce a vari livelli con numerosi studiosi italiani e stranieri di prestigio,
tra i quali (ordine alfabetico) F. Cardin (Padova), S. Doplicher (Roma, La Sapienza), G. Gaeta
(Milano), V. Penna (Politecnico di Torino), M. Rasetti (Politecnico di Torino e IAS Princeton),
S. Scarlatti (Roma, Tor Vergata), G. Valli (Pavia), T. Wurzbacher (Metz), (collaboratori) e L.
Accardi (Roma, Tor Vergata), P. Akhmet’ev (Izmiran) A. Carey (Canberra) C. D’Antoni (Roma,
Tor Vergata), C. De Concini (Roma, Tor Vergata), G. Elliott (Copenhagen e Toronto), G. Goldin
(Rutgers), D. Guido (Roma, Tor Vergata), K. Hannabuss (Oxford) C. Hsieh (Taipei) L. Kauffman
(Chicago) G. Landi (Trieste), R. Longo (Roma, Tor Vergata), P. Marchetti (Padova) M. Matone
(Padova) J. Mickelsson (Stoccolma) I. Mladenov (Sofia), S. Paycha (Clermont-Ferrand) P. Piazza
(Roma, La Sapienza) R. Picken (Lisboa), E. Previato (Boston), J. Rawnsley (Warwick), T. Regge
(Torino), R. Ricca (Milano Bicocca) M. Rieffel (Berkeley), S. Rosenberg (Boston).

Inoltre svolge funzione di avviamento alla ricerca per studenti laureati e non (lavori pubblicati
in collaborazione con F. Coiai, A. Benvegnù e N. Sansonetto, A. Besana, v. anche oltre)

• Partecipazione a progetti di ricerca nazionali e internazionali, organizzazione di incontri e
congressi

Attualmente M.S. partecipa al Progetto PRIN 2008 Geometria non commutativa, gruppi quantici
e applicazioni (Resp. G.Landi (Trieste) e al GREFI-GENCO, Gruppo di Ricerca Franco-Italiano in
Geometria Non Commutativa (Resp. D.Guido e J.L.Sauvageot).

Nel 1999 e nel 2004 ha organizzato tramite il programma visitatori del GNSAGA la visita di un
mese del Prof. T. Wurzbacher a Padova, e nel 2005 una nuova visita dello stesso a Padova per un
corso di dottorato sulla teoria dell’indice. Ha altres̀ı ospitato la Prof.ssa E. Previato nel 2002 per
un mese nell’ambito degli scambi accademici Padova-Boston.

Ha collaborato all’organizzazione del convegno internazionale: Three days on Mathematical Mod-
els of Quantum fluids: Geometrical, Analytical and Computational Aspects, Verona, 14-17 settembre
2009 (M. Caliari, L.M. Morato, M.S., S.Zuccher).

Ha organizzato il convegno internazionale “Entanglement and Linking”, Pisa 18-19 maggio 2011,
nell’ambito del programma “Knots and Applications” del Centro di Ricerca Matematica “Ennio De
Giorgi”.

Ha organizzato, assieme alla Prof.ssa A. Di Pierro, una Lectio Magistralis del prof. L.H. Kauff-
man, tenutasi presso il Dipartimento di Informatica a Verona il 9 maggio 2011.

• Descrizione dei lavori
Passiamo ora ad una descrizione dei lavori filone per filone, cui si fa precedere volta per volta

una sommaria illustrazione della problematica generale e delle motivazioni.

1. Geometria

1.1 Geometria differenziale della Grassmanniana di Sato-Segal-Wilson e questioni connesse.
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Lo studio della Grassmanniana di Sato-Segal-Wilson, oltre a rivestire un notevole inter-

esse in sé nell’ambito della geometria differenziale in dimensione infinita, è fondamentale per

comprendere l’analisi armonica dei gruppi di cappi (loop groups), ovvero la teoria delle loro

rappresentazioni unitarie irriducibili, che è possibile formulare alla Borel-Weil (vedi oltre)

nonché per comprendere la struttura geometrica delle soluzioni delle equazioni KdV (o, più in

generale KP), che a loro volta giocano un ruolo fondamentale nel

problema di Schottky. Inoltre tale varietà costituisce un naturale banco di prova per l’estensione

di tecniche geometrico-differenziali e geometrico-algebriche in un contesto infinito dimension-

ale, dove è necessario superare numerose difficoltà analitico-funzionali

Veniamo ora all’esposizione dei risultati ottenuti.
1.1.1. Caratterizzazione alternativa della Grassmanniana. Coordinate ed equazioni di Plücker

della Grassmanniana attraverso un’immersione alla Kodaira tramite il duale del fibrato determinante
([21],[22]). Nuova costruzione del fibrato determinante ([24],[25]). Applicazioni alle equazioni KP
[43].

Si considera la Grassmanniana di Segal e Wilson Gr(K,K+) o più brevemente Gr, ottenuta
a partire da una polarizzazione K = K+ ⊕ K− di uno spazio di Hilbert di dimensione infinita
(con K± pure di dimensione infinita), la quale consiste di tutti i sottospazi chiusi W di K tali
che EW − E+ sia un operatore di Hilbert-Schmidt. Con EW si denota l’operatore di proiezione
ortogonale sul sottospazio W . Tale caratterizzazione, diversa dalla definizione usuale (v.Pressley-
Segal) è data in [21]. Dunque, si considerano tutti i sottospazi “vicini” ad un sottospazio dato. La
norma Hilbert-Schmidt emerge in modo naturale dagli esempi ed è a posteriori geometricamente
giustificata dalla teoria sviluppata in [21], [24]. È noto che Gr(K,K+) è una varietà Kähleriana
omogenea rispetto all’azione del gruppo unitario ristretto Ures(K), costituito da tutti gli operatori
unitari che commutano con J = E+ − E− a meno di un operatore di Hilbert-Schmidt.

Determiniamo esplicitamente le equazioni di Plücker che governano l’immersione della Grass-
manniana in un opportuno spazio proiettivo P (H). Si pensi, in dimensione finita, al famoso esempio
dell’immersione di Gr2(4) ↪→ P 5 come quadrica di Klein. Il punto cruciale è nell’osservare che su H
agisce l’algebra delle Relazioni Canoniche di Anticommutazione (CAR) -una versione infinito dimen-
sionale di un’algebra di Clifford- o, più esattamente una sua opportuna rappresentazione) e di usare
la teoria C∗-algebrica soggiacente, di Powers e Størmer, per formulare le corrette generalizzazioni
dei concetti finito-dimensionali. La Grassmanniana appare come intersezione di quadriche, ognuna
delle quali è un cilindro su una quadrica finito-dimensionale.

L’immersione viene interpretata nel senso di Kodaira attraverso le sezioni olomorfe (di“quadrato
sommabile”) del (duale del) fibrato determinante e viene realizzata una rappresentazione unitaria
proiettiva irriducibile di Ures(K) alla Borel-Weil (analogamente a quanto accade nel caso finito-
dimensionale per il gruppo unitario). La rappresentazione diviene unitaria passando ad una esten-
sione centrale tramite U(1) ∼= SO(2). A livello di algebra di Lie, il 2-cociclo corrispondente è la
forma di Kähler della Grassmanniana. È questo un notevole esempio di quantizzazione geometrica
in dimensione infinita. In modo informale, la fibra del fibrato determinante sopra un sottospazio W
di Gr è data da Cw1 ∧ w2 ∧ . . ., dove (w1, w2, . . .) è una base (ammissibile nel senso di Pressley e
Segal) di W . Nella terminologia di V.Kac, si tratta di un prodotto esterno semi-infinito.

Tale fatto ha suggerito la possibilità di definire ex novo il fibrato determinante sfruttando
l’equivarianza rispetto a tale gruppo. La nuova costruzione è agevole, trasparente e non fa uso
esplicito di funzioni di transizione, e la banalità locale risulta automatica dal fatto che le fibre
appaiono come rette per l’origine in uno spazio di Hilbert H e pertanto è “sintetica”.

Per darne un’idea, seppur vaga, è necessario dapprima gettare un rapidissimo sguardo alla
costruzione di Gelfand-Naimark-Segal (GNS) che esamineremo in un caso semplice e tuttavia im-
portante poiché riformula importanti risultati dell’analisi reale classica.
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L’algebra delle funzioni continue su uno spazio topologico compatto (per fissare le idee) C0(X)
agisce come algebra di operatori in modo naturale (moltiplicazione) su L2(X,µ) dove µ è una
qualsiasi misura di Borel (positiva) normalizzata (

∫
X
dµ = 1). Applicando C0(X) alla funzione

1 ∈ L2(X,µ) si ottiene un sottoinsieme denso di L2(X,µ) (teorema di Riesz-Fisher). Si dice allora
che 1 = ξµ è un vettore (di norma 1) ciclico per la rappresentazione data (GNS) πµ di C0(X) su
L2(X,µ) = Hµ. In definitiva si ha la terna GNS (πµ, Hµ, ξµ). In vista di ulteriori generalizzazioni,
si ricordi in tale contesto il teorema di Riesz-Markov che consente di identificare le misure positive
con funzionali lineari positivi su C0(X).

La costruzione precedente si generalizza ad una C∗-algebra qualsiasi A e ad un suo stato ω
(funzionale lineare positivo di norma 1). Qui diciamo solo che una C∗-algebra può sempre essere
vista concretamente come ∗-sottoalgebra chiusa in norma dell’algebra degli operatori lineari e con-
tinui (cioè limitati) su uno spazio di Hilbert. La rappresentazione GNS associata è denotata con
(πω, Hω, ξω). Ora, l’idea fondamentale è che i punti della Grassmanniana (letti come operatori di
proiezione E) sono in corrispondenza biunivoca con un particolare sottoinsieme di stati dell’algebra
CAR (detti stati quasi-liberi gauge invarianti; ci limitiamo a dire che questi emergono in modo
naturale nella trattazione matematica della teoria della superconduttività di Bardeen, Cooper e
Schrieffer) tali che le loro rappresentazioni GNS risultino unitariariamente equivalenti, e che per-
tanto possono essere realizzate su uno stesso spazio H. Ciò equivale anche a dire che il sottogruppo
di U(K) che dà luogo ad automorfismi della CAR algebra unitariamente implementabili nello spazio
dato (ossia sono della forma U(·)U−1) è precisamente Ures(K). In virtù del teorema di Powers-
Størmer ciò equivale a dire che E − E+ è Hilbert-Schmidt, il che corrisponde esattamente alla
condizione caratterizzante la Grassmanniana! Inoltre (vedi di seguito) ‖E1 − E2‖2 ha il notevole
significato geometrico di Diastasi di Calabi. Pertanto le fibre del fibrato determinante sono costituite
dai sottospazi unidimensionali < ξE > generati dai vettori GNS. Ricordiamo poi che equazioni di
Plücker prendono la forma estremamente compatta (adattabile anche al caso finito-dimensionale)

a(w)∗W = 0 ∀w ∈W.

ove W ∈ Gr (a(w)∗ è un operatore di creazione nell’appropriata rappresentazione
dell’algebra CAR) e queste vengono naturalmente interpretate in termini del Principio di Esclu-

sione di Pauli.
1.1.2 Nuova costruzione del fibrato Pfaffiano. Costruzione della “Spinc Representation” in di-

mensione infinita alla Borel-Weil. Spinori alla Elie Cartan. Immersioni di Segre di Grassmanniane
([24],[25])

È possibile un’analoga costruzione intrinseca ed equivariante del fibrato lineare olomorfo Pfaffi-
ano, che risulta essere la radice quadrata (olomorfa) del fibrato determinante, previa restrizione alla
Grassmanniana isotropa costituita dalle possibili strutture complesse su uno spazio di Hilbert reale
H “vicine” ad una prefissata. Il nome è giustificato dal fatto che una struttura complessa, a sua
volta, corrisponde ad un sottospazio isotropo rispetto alla forma bilineare indotta da una fissata
complessificazione HC di H. La struttura di fibrato viene mostrata utilizzando i risultati di Shale
e Stinespring. Il gruppo coinvolto è il gruppo ortogonale ristretto Ores(H). Le sezioni olomorfe del
duale del fibrato lineare Pfaffiano realizzano una rappresentazione proiettivamente unitaria di tipo
Borel-Weil del gruppo ortogonale ristretto Ores(H). Tale rappresentazione è detta rappresentazione
spinoriale (o meglio Spinc-representation) e generalizza le note costruzioni di Brauer e Weyl e di
E.Cartan nel caso finito-dimensionale, fornendo nel contempo una vivida interpretazione geometrica
della teoria algebrica di Shale e Stinespring.

La proprietà fondamentale del fibrato Pfaffiano risulta essere una conseguenza di un isomorfismo
canonico esistente tra l’algebra A(K) e l’algebra A(K ′), con K ′ il duale di K (detta Corrispondenza
Fock - anti-Fock che scambia operatori di creazione con operatori di distruzione sul duale. Tra gli
altri risultati menzioniamo una immersione alla Segre di un prodotto di due “piccole” grassmanniane
in una “grande”, interpretabile in termini di prodotto tensoriale di due rappresentazioni quasi-libere,
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che tra l’altro rimpiazza la “applicazione quadrato” di Pressley-Segal, che mostriamo non essere ben
definita.

Per concludere, vogliamo osservare come in tali lavori si mostra come ogni operazione o concetto
C∗-algebrico possiede una controparte geometrica che gliene conferisce un significato più chiaro e
profondo.

Nel lavoro [43], in parte di rassegna, si collega la teoria generale suesposta alle grassmanniane
“concrete” delle varie gerarchie KdV, KP, deteminandone una nuova (di Segre), e viene offerta una
nuova dimostrazione della reciprocità di Weil in termini di diastasi di Calabi.

1.1.2 Diastasi di Calabi e identità determinantali Diastasi di Calabi della Grassmanniana e
”formule di bosonizzazione”. Corollario al teorema di Quillen sul fibrato determinante. Teorema di
rigità di tipo Calabi. Teorema di risoluzione di singolarità per mappe pluriarmoniche.([17],[21])

Nel lavoro [17] studiamo in contesti infinito dimensionali la diastasi di Calabi, traendo ispi-
razione dalle ricerche di M. Cahen, S. Gutt e J. Rawnsley sulla quantizzazione geometrica delle
varietà Kähleriane. Detta funzione possiede notevolissime proprietà che la rendono di fondamentale
importanza in geometria analitica. In molti casi essa coincide con la distanza geodetica, il che ne
spiega il nome. Ci limitiamo, in vista dell’esposizione dei nostri risultati, ad osservare che essa
risulta definita (localmente) a partire da un fissato potenziale Kähleriano ed è tuttavia indipendente
da questo. Fissandone uno dei suoi due argomenti, la diastasi risulta essere essa stessa un poten-
ziale Kähleriano “canonico”. Inoltre essa si comporta in modo naturale sotto “pull-back”. Ora,
grazie all’indipendenza dal potenziale Kähleriano, calcolandola in due modi diversi fornisce identità
diastatiche potenzialmente non banali. Questa osservazione è stata applicata al caso di Gr e al caso
(studiato da D. Quillen e poi da J.M. Bismut e D. Freed) della varietà affine Kähleriana consistente
di tutti gli operatori ∂ su un fibrato vettoriale olomorfo su una superficie di Riemann Σ di genere
g. Si richiede in quest’ultimo caso che l’indice di tali operatori sia zero, e ciò porta, in base al
teorema di Riemann-Roch (generalizzato; si tratta di un caso particolare del teorema dell’indice di
Atiyah-Singer) alla condizione d = r(g − 1) (d = grado di E (prima classe di Chern), r = rango di
E. Quillen ha definito per tale varietà il cosidetto fibrato determinante, ha introdotto una metrica
su questo fibrato con una connessione naturale compatibile e ne ha calcolato la curvatura mostrando
che essa coincide essenzialmente con la forma di Kähler (in altre parole, ha sviluppato il programma
della quantizzazione geometrica per tale varietà). Proseguendo, noi mostriamo che un punto di vista
diastatico conduce ad una identità determinantale apparentemente insospettata, che riportiamo qui
sotto

|det(D∗A ·DB)|2 = exp(‖A−B‖2) det(D∗A ·DA)det(D∗B ·DB)

(dove DA = ∂E +A, con ∂E un operatore fissato e A ∈ Ω(0,1) e ‖A‖2 =
∫

Σ
tr(A∗A). I determinanti

in questione vanno intesi in senso regolarizzato (tramite un’ appropriata funzione Zeta di Riemann,
alla Ray-Singer). L’idea é la seguente: si parta da una matrice diagonale (finito-dimensionale) con
autovalori positivi. Si trova facilmente

detA = exp tr logA = exp(−ζ ′A(0))

con ζA(s) = tr(A−s). Il secondo membro ha senso per un operatore ellittico e ne definisce il suo
determinante alla Ray-Singer.

Lavorando allo stesso modo sulla Grassmanniana, si giunge alle considerazioni
seguenti: in primo luogo, la diastasi è il quadrato della norma Hilbert-Schmidt della differenza

di due proiettori corrispondenti a due sottospazi della Grassmanniana (nella stessa carta locale)
(ecco un ulteriore e decisivo significato geometrico della teoria di Powers-Størmer!). In secondo
luogo il prodotto scalare tra due sottospazi visti come elementi dello spazio GNS di un’opportuna
rappresentazione dell’algebra CAR uguaglia (a meno di un fattore di fase) quello tra gli stessi
sottospazi letti alla Borel-Weil come sezioni olomorfe di un fibrato lineare olomorfo ed hermitiano (il
duale del fibrato determinante suGr: ciò è un esempio di quella che viene chiamata “bosonizzazione”.
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Inoltre, basandoci su un teorema di E.Wigner che si può interpretare come un analogo (in un
contesto Hilbertiano) del teorema fondamentale della geometria proiettiva - data un’applicazione
T : P (H)→ P (H) che conserva i moduli dei prodotti scalari, essa è indotta da un operatore unitario
o antiunitario sul soggiacente spazio di Hilbert - generalizziamo un teorema di rigidità di Calabi: date
due immersioni di una varietà complessa connessa e semplicemente connessa nella Grassmanniana
aventi gli stessi pull-back della forma di Kähler, allora tali immersioni sono connesse da un’isometria
di P (H). Inoltre si provano alcuni risultati concernenti proprietà delle mappe pluriarmoniche da
una varietà complessa in un loop group.

1.1.3 Immersioni di gruppi di cappi basati (Based Loop Groups) in Grassmanniane. Loro ge-
ometria differenziale estrinseca ed intrinseca, Geometria e operatore di Dirac sugli spazi di cappi e
generalizzazioni, gerbes ([29], [33], [36], [38], [41], [44], [46])

Riguardo alla geometria differenziale della Grassmanniana si sono provati inoltre i seguenti risul-
tati. Intanto, essa è una varietà riemanniana simmetrica isotropicamente irriducibile (la rappre-
sentazione di isotropia è irriducibile). Si sono determinati esplicitamente il tensore di curvatura
di Riemann e il tensore di Ricci, dimostrando che quest’ultimo possiede una divergenza lineare (in
modo informale, i suoi autovalori tendono ad 1). Si riottiene in particolare che le Grassmanniane
finito-dimensionali Gk(n) sono varietà di Kähler-Einstein (KE), ovvero esse sono varietà Kähleriane
in cui il tensore di Ricci è proporzionale alla metrica (il fattore di proporzionalità è n).

È poi noto che i cosiddetti gruppi di lacci basati (varietà della forma LK/K, con K un gruppo di
Lie semplice) si immergono in Gr ed ereditano la metrica (di Sobolev) H

1
2 . Si è calcolato il tensore

di curvatura di Riemann distinguendone una parte estrinseca (dipendente dalla varietà ambiente)
e le correzioni normali dipendenti dalla seconda forma fondamentale (equazioni di Gauss). Quindi,
aggirando alcune difficoltà tecniche derivanti dal contesto infinito-dimensionale, e richiedendo in
particolare la persistenza di una forma di minimalità (derivante dalla situazione finito dimensionale:
una sottovarietà complessa di una varietà Kähleriana è minimale, ossia il vettore di curvatura media
è identicamente nullo) abbiamo calcolato il tensore di Ricci dimostrando che LK/K è KE, con un fat-
tore di proporzionalità dipendente dal valore dell’operatore di Casimir in una data rappresentazione
unitaria irriducibile di K. (per SU(d) vale 2d). È interessante notare come la parte “normale” del
tensore di Ricci sia logaritmicamente divergente (la traccia dell’operatore diverge come logN), ma
grazie all’analogo contributo (di segno opposto!) della parte estrinseca, si ha un risultato finito. Si
nota qui un interessante collegamento con le cosiddette tracce singolari (alla Dixmier) e con la teoria
dei residui di Adler-Manin, Gullemin, Wodzicki.

Nel lavoro [33] (valutazione CIVR 2006: eccellente) affrontiamo il problema della definizione rig-
orosa del fibrato spinoriale e dell’operatore di Dirac equivariante (per rotazione: Dirac-Ramond) sullo
spazio dei cappi associato ad una varietà spin di dimensione finita, partendo da formule euristiche
provenienti dalla teoria delle corde (cf. Witten, Killingback). Abbiamo fornito una definizione rig-
orosa degli oggetti sopra menzionati su Rn, calcolando inoltre il corrispondente indice equivariante,
legato alla partitio numerorum di Eulero. Le tecniche utilizzate sono di tipo analitico-funzionale;
cruciale è l’idea di impiegare rappresentazioni dell’algebra CAR realizzate tramite prodotti diretti
“incompleti” (nel senso di J. von Neumann), seguendo Guichardet (tale idea è mutuata dal primo
filone di ricerca di M.S. v. anche oltre). Si fa poi uso ripetuto del teorema di Nelson sui vettori
analitici. Sono stati inoltre evidenziati legami con l’approccio probabilistico e con la quantizzazione
supersimmetrica di Grosse e Langmann: l’operatore di Dirac-Ramond appare come la seconda quan-
tizzazione della corrente di E.Noether associata alla trasformazione di supersimmetria che scambia
bosoni e fermioni. Nel lavoro [38], di lunga gestazione, fortemente basato su [25], e sulla scia della
corrispondente costruzione finito dimensionale di M.Dubois-Violette, costruiamo due spazi twisto-
riali (fibrazioni in strutture complesse) sullo spazio dei lacci, e ne stabiliamo l’equivalenza nel caso
Kàhleriano e interpretiamo l’ostruzione all’esistenza di una struttura di stringa (l’equivalente nel
contesto dei lacci di una struttura di spin) in termini di banalità di un opportuno “covone” (gerbe),
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secondo i dettami della teoria di Brylinski (costruzione di GLSW), e nello stesso tempo, come es-
istenza di un fibrato lineare che, ristretto sulle singole fibre (Grassmanniane isotrope) , riproduca il
fibrato Pfaffiano. Tale ostruzioni vengono descritte da opportune classi di coomologia di Dixmier-
Douady (di cui proviamo l’equivalenza). Il tutto si basa su uno studio dettagliato del fibrato tangente
dello spazio dei cappi, di cui esibiamo funzioni di transizione particolarmente espressive, in termini
di logaritmi (nel senso di Dunford) dell’operatore di trasporto parallelo. Strettamente collegato
a ciò è lo studio della famiglia degli operatori di Atiyah (introdotti da questi in modo euristico
in un influente lavoro del 1985), che risulta cruciale nell’effettiva costruzione di uno dei due spazi
twistoriali.

Il lavoro contiene anche una descrizione dettagliata del “funtore di cappio” (loop functor), spesso
data per scontata in letteratura.

In [41] si utilizza la metrica L2 su spazi di applicazioni, (la cui geometria differenziale è suscettibile
di un’agevole descrizione “puntuale” per dimostrare l’esistenza di buoni ricoprimenti; tale risultato
permette di estendere a tali ambienti i risultati finito-dimensionali sul calcolo della coomologia di
Čech in termini di ricoprimenti aciclici e l’isomorfismo Čech - de Rham.

Il lavoro [44] si colloca in questo filone e mira ad una semplice costruzione ”classica” e ricor-
siva di “q + 2-gerbes con multi-connessione” sullo spazio base di una fibrazione come ostruzione
all’incollamento di una famiglia di “q + 1-gerbes” sulle fibre per ottenere un “q + 1-gerbe” sullo
spazio totale. Precisamente si mostra che ogni classe di coomologia trasgressiva in Hq(F ) sulla fibra
F (i.e. un q + 1-gerbe), conduce ad un gerbe con multi-connessione sulla base. Si fornisce inoltre
un’interpretazione di alcune classi di“gerbopoli” di Picken e Ferreira-Gothen come classi di Eulero
di fibrati in sfere associati a fibrati vettoriali, fornendo in particolare un ritratto ”gerbistico” delle
classiche fibrazioni di Hopf, nonché una rilettura delle “strutture di stringa” alla Cocquereaux -Pilch
e alla S.-Wurzbacher .

Nel lavoro [46] si fornisce un’interpretazione della funzione zeta di Riemann in termini di un
indice equivariante di un operatore di Dirac-Ramond generalizzato, e si estende il tutto al caso delle
membrane frattali di Lapidus. Si costruisce poi un modello fermionico di tipo Bost-Connes, nello
specifico di una famiglia di stati KMS dotata di ”transizione di fase”, nel senso della presenza di un
cambio del tipo di algebra di von Neumann coinvolta (i.e. la chiusura debole della rappresentazione
GNS indotta dallo stato in questione), da III1 a I∞ nel senso della classificazione di Connes.

1.2.1 Descrizione geometrico differenziale degli spazi di moduli dei minimi del funzionale di Yang-
Mills per i tori non commutativi quali riduzioni simplettiche a partire da un’applicazione momento
naturale ([15], [19], [13], [8])

Richiamiamo brevemente la tecnica di riduzione di Marsden-Weinstein, che introdotta orig-

inariamente in ambito fisico matematico (costituisce infatti una generalizzazione della teoria

del momento angolare nella dinamica del corpo rigido e, in ambito hamiltoniano, del teo-

rema di E.Noether) ha avuto notevoli applicazione in numerosi altri campi, come la teoria di

Yang-Mills su superficie di Riemann sviluppata da Atiyah e Bott, e la teoria di F. Kirwan.

Data una varietà simplettica (M,ω) su cui agisca un gruppo di Lie, G con algebra di Lie

g, modulo condizioni tecniche di tipo coomologico, è possibile definire un’applicazione mo-
mento µ : M → g∗ (duale di g che risulti G-equivariante. Il punto cruciale è che le orbite

della rappresentazione coaggiunta di G (su g∗ sono varietà simplettiche (Kirillov). Fissato un

elemento f ∈ g, si consideri

Mf = µ−1(f)/Gf ,

dove Gf è il sottogruppo di isotropia di f (pensato agente su M ). In condizioni opportune Mf

risulta pure una varietà simplettica, detta varietà ridotta (nel senso di Marsden-Weinstein).
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Lo scopo di questi lavori è l’estensione della teoria di Atiyah-Bott in un contesto di geometria
differenziale non commutativa. Ricordiamo che, in virtù del teorema di Swan, il concetto di fibrato
vettoriale su una varietà (o, più precisamente, delle sue sezioni) può essere riformulato in modo
puramente algebrico: esso corrisponde ad un modulo proiettivo finitamente generato sull’algebra
delle funzioni lisce sulla varietà. Ciò permette di considerare “fibrati vettoriali” su una qualsiasi
algebra ed parimenti è possibile sviluppare l’apparato della geometria differenziale in tale contesto
e porre per esempio il problema di Yang-Mills: determinare le soluzioni di tali equazioni (o una loro
sottoclasse particolare) a meno di equivalenza di gauge: in forma geometrica, si tratta di descrivere
uno spazio di moduli. Sono stati considerati i cosiddetti tori non commutativi (C∗-algebre universali
generate da una famiglia finita di unitari su uno spazio di Hilbert soggetti commutanti a due a
due a meno di un fattore di fase; il toro ordinario è recuperato attraverso la sua algebra delle
funzioni continue che, in base alla teoria di Fourier e al teorema di approssimazione uniforme con
polinomi trigonometrici di Weierstrass è generata appunto dai due operatori unitari corrispondenti
alle rotazioni sui cerchi componenti.

Risultati. Si fa vedere che, restringendoci ad una classe speciale di fibrati su tori, i minimi del
funzionale di Yang-Mills (sempre modulo equivalenza di gauge) costituiscono una varietà simplet-
tica ridotta nel senso di Marsden-Weinstein. La riduzione si opera a partire dalla varietà simplettica
costituita da tutte le connessioni irriducibili. L’applicazione momento è la funzione che associa ad
una connessione la sua curvatura, e il gruppo coinvolto è il gruppo di “gauge” (endomorfismi del
fibrato). In tal modo si generalizzano i risultati di Connes e Rieffel e se ne fornisce una chiara
interpretazione geometrica nello spirito della teoria di Atiyah-Bott. Inoltre si dà una dimostrazione
rapidissima di un importante risultato di Rieffel sui punti critici (non necessariamente minimi) sul
2-toro non commutativo. La teoria viene poi interpretata anche nell’ambito della teoria del gruppo
di Heisenberg. Lo sviluppo della teoria richiede l’estensione della teoria ellittica in ambito non com-
mutativo (spazi di Sobolev e corrispondenti teoremi di Sobolev, Rellich, Maurin, nonchè condizioni
sufficienti affinché tali spazi costituiscano algebre di Banach), e, infine, risultati di regolarità ellittica
e bootstrapping: ciò è stato fatto nel lavoro [13] (e anche in [15]).

1.2.2 Geometria differenziale non commutativa, riemanniana, e relatività generale [31], [46]
In collaborazione con F. Coiai (che ha in seguito ottenuto il dottorato alla SISSA) si sono af-

frontati, nel corso della sua tesi di laurea, problemi relativi all’uso della geometria differenziale non
commutativa nella costruzione di teorie gravitazionali (principio di azione spettrale di Chamseddine-
Connes); abbiamo ottenuto due dimostrazioni molto semplici del teorema di Kastler e Kalau-Walze,
una basata su metodi classici coinvolgenti l’operatore del calore e mostrato come un approccio di-
retto basato sul residuo di Wodzicki fornisca l’azione classica (che approssima l’azione di Connes),
data da un termine cosmologico oltre all’usuale azione di Einstein-Hilbert. Inoltre si sono esaminati
i rapporti tra azione spettrale e azione di Einstein-Hilbert tramite un approccio ”classico”, ispirato
(ma diverso) da quello dovuto a G. Landi e C. Rovelli, che porta a vedere i cosiddetti istantoni
gravitazionali sotto una nuova luce. Il frutto di tali ricerche è la nota [31].

Il lavoro [45], gia’ descritto, si puo’ collocare in questo filone.
1.3 Descrizione esplicita delle orbite critiche del quadrato dell’applicazione momento associata

and una rappresentazione irriducibile di un gruppo di Lie semplice.[18]
Il programma di F. Kirwan e L. Ness è qui sviluppato in un caso particolare importante in sé,

ovvero lo studio delle G-orbite in uno spazio proiettivo associato ad una rappresentazione unitaria
irriducibile di un gruppo di Lie semplice, determinando condizioni necessarie e sufficienti (in termini
della geometria del “root pattern” associato all’algebra di Lie semplice in questione) affinché un
orbita sia critica per il quadrato dell’applicazione momento. in particolare si trova che le orbite
simplettiche sono sempre critiche, e ciò non sembrava essere stato notato esplicitamente prima, ma
che il viceversa è falso. Si generalizzano inoltre risultati di interesse fisico-matematico, basandoci
sull’osservazione cruciale che il quadrato dell’applicazione momento coincide essenzialmente, a meno
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di una costante additiva (che etichetta la rappresentazione irriducibile in questione) con la cosiddetta
indeterminazione invariante di Perelomov e Delbourgo.

1.4 Costruzione geometrico-differenziale di rappresentazioni del gruppo di Heisenberg. Reinter-
prezione del teorema di Abel-Jacobi,[5], [28]

È ben noto il legame esistente tra l’analisi armonica sul gruppo di Heisenberg e la teoria delle
funzioni theta, sfruttato appieno da D.Mumford nella teoria delle varietà abeliane. Qui si propone
un approccio geometrico differenziale di alcuni aspetti della teoria.

In questo lavoro si costruisce una famiglia di rappresentazioni unitarie irriducibili del gruppo di
Weyl-Heisenberg (tutte equivalenti fra loro, in virtù del teorema di Stone-von Neumann) in chiave
geometrico differenziale. Il punto di partenza è l’individuazione del legame tra la dimostrazione
originale di von Neumann
(l’irriducibilità di una tale rappresentazione si riduce a provare che il nucleo di un certo operatore
è unidimensionale) e il teorema di Riemann-Roch applicato ad una varietà abeliana (toro algebrico
ovvero immergibile in un opportuno spazio proiettivo) principalmente polarizzata, in cui lo spazio
delle sezioni olomorfe di un certo fibrato risulta unidimensionale e corrisponde alla funzione theta di
Riemann. Più esattamente, l’idea cruciale è identificare operatori di annichilazione con operatori ∂.
L’immagine che ne emerge è la seguente: a livello infinitesimale la rappresentazione di Heisenberg

[P,Q] = iI

esprime la curvatura della connessione canonica (di Chern-Bott) sul fibrato olomorfo in questione
(lo spazio di Hilbert della rappresentazione consiste delle sezioni di quadrato sommabile rispetto
ad un’opportuna metrica hermitiana) e gli operatori P (impulso) e Q (posizione) appaiono come
derivate covarianti. Passando alla forma integrale di Weyl, si ottiene una chiara interpretazione
della stessa in termini di trasporto parallelo (formula di Levi Civita), interpretazione che abbiamo
esteso anche in un contesto non commutativo nel lavoro [11].

Come applicazione della teoria degli stati coerenti (v.oltre) viene fornita in [28] una dimostrazione
del teorema di Abel-Jacobi in termini di diastasi di Calabi e dedotte nuove identità theta.

1.5 Costruzione geometrico differenziale in termini di connessioni formali di Chen di rappresen-
tazioni della serie centrale inferiore del gruppo fondamentale di un allacciamento. Aspetti geometrici
della teoria dei nodi ([10], [12], [16], [27], [32], [35], [36], [47])

In tale gruppo di lavori sviluppiamo un approccio geometrico-differenziale per descrivere la se-
rie centrale inferiore del gruppo di un allacciamento (link) in termini delle connessioni formali
e degli integrali iterati di K.T.Chen, mostrando inoltre che gli invarianti del link si trovano nel
centro dell’algebra inviluppante dell’algebra di Lie (infinito dimensionale) del gruppo dei diffeomor-
fismi dello spazio che conservano il volume (campi vettoriali a divergenza nulla). L’idea di base è
l’osservazione che una connessione piatta (curvatura nulla) induce una rappresentazione del gruppo
fondamentale di una varietà. Nel nostro caso i generatori del gruppo appaiono come operatori di
trasporto parallelo (e corrispondono alle componenti del link) e le relazioni esprimono condizioni
di annullamento di curvatura. (si ottiene una gerarchia di equazioni di Chen) L’uso degli integrali
prodotto (Volterra, Schlesinger) è adatto per la sua forma “moltiplicativa” (è qui coinvolta una ver-
sione generalizzata del teorema di Stokes). Inoltre, la gerarchia delle equazioni di Chen può essere
derivata in modo compatto da un’opportuna lagrangiana di tipo Chern-Simons (classe caratteristica
secondaria) dal chiaro significato geometrico e topologico: essa contiene informazioni sui linking
numbers delle componenti del link e sulla possibile formazione di anelli di Borromeo. In [32] si for-
nisce, nello stesso spirito, un approccio geometrico differenziale (ispirato alla teoria di Chern-Weil)
ai linking numbers di ordine superiore di Milnor-Massey, e si fa vedere che essi possono interpretarsi
come linking numbers ordinari. Si prova una versione del teorema di Turaev-Porter sull’uguaglianza
dei linking numbers di Milnor e di quelli di Massey calcolando in due modi diversi un opportuno
operatore di trasporto parallelo. Nel contempo si ottiene una chiara interpretazione geometrica
dell’approccio combinatorio-gruppale di Milnor.
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Nel lavoro [35] (con A. Besana, Ph.D. marzo 2005, supervisione del sottoscritto) si forniscono varie
interpretazioni meccaniche dell’incorniciamento di un nodo (framing), riconducibili alla scelta di una
funzione di fase (localmente costante) su una sottovarietà Lagrangiana, e si stabilisce un’analogia
con la teoria di Maslov, attraverso la teoria di Chern-Simons-Witten abeliana. L’integralità del
linking number di Gauss è collegata ad una condizione di tipo Bohr-Sommerfeld. Si stabilisce
inoltre un legame con le rappresentazioni scalari del gruppo delle trecce emergenti nell’approccio di
Goldin, Menikoff e Sharp alla teoria dei vortici quantistici (v. anche 2.1) e si fornisce una semplice
intepretazione delle cosiddette funzioni d’onda anioniche di Laughlin in termini di quantizzazione
geometrica.

[36] è un lavoro di rassegna basato principalmente su [35] e [32], in cui si riesamina la prob-
lematica dei numeri di allacciamento da un punto di vista più generale e in cui si dimostrano due
risultati nuovi: il primo generalizza il teorema ”l’elicita’ minora l’energia”, di V.Arnol’d, ad un
campo magnetico congelato in un fluido, modellato su un link brunniano, l’altro fornisce una nuova
rappresentazione del gruppo delle trecce pure a tre fili, ispirata a [32], in cui l’identita’ di Arnold
viene vista come condizione di piattezza di una connessione nilpotente.

Nel lavoro [47] estendiamo tale idea e costruiamo una famiglia di connessioni nilpotenti piatte la
cui olonomia fornisce invarianti di trecce pure (a 3 e 4 fili). Cruciale risulta l’interpretazione degli
integrali di Chen coinvolti in termini di monodromia di iperlogaritmi, assieme ad un procedimento
di linearizzazione, ideato da A. Benvegnù, che semplifica enormente i calcoli.

2. Applicazioni alla Fisica Matematica
2.1.Geometrizzazione della teoria dei vortici ([9], [14], [20], [26], [10], [12], [16], [27], [30], [32],

[35], [36])
In [9] sviluppiamo una descrizione geometrica della teoria dei vortici quantistici sviluppata da

Rasetti e Regge, basandoci sulle tecniche di geometria simplettica di Marsden e Weinstein e sulla
quantizzazione geometrica di Kirillov-Kostant-Souriau. L’algebra delle correnti di Rasetti e Regge
viene interpretata in modo naturale come algebra hamiltoniana associata ad una particolare orbita
coaggiunta di G := sDiff(R3) etichettata dalla vorticità, concentrata su una curva chiusa, o,
più in generale, su un link in R3. La condizione di prequantizzazione di questa orbita è connessa
alla quantizzazione di Feynman-Onsager (reinterpretata alla Bohr-Sommerfeld in [35] (v.sopra, 1.5)
(cf. anche [36]). Inoltre essa è formalmente una varietà Kähleriana, risultato raggiunto ed esteso
successivamente da Brylinski. In [14] si estendono tali idee al caso in cui il campo di vorticità sia
liscio, ottenendo una vivida descrizione geometrica delle classiche variabili di Clebsch, associando
a queste opportune varietà Kähleriane costruite a partire da mappe lisce da S3 in S2 (classificate
dall’invariante di Hopf, calcolato alla Whitehead). Introduciamo quindi i candidati naturali per gli
stati coerenti (v. anche oltre) del sistema, suggerendo nello stesso tempo un procedimento per la
costruzione dello spazio di Hilbert quantistico che prescinda dalla costruzione di una misura, la cui
esistenza è in tale contesto problematica. Seguendo Rasetti e Regge, interpretiamo gli invarianti di
un link come numeri quantici del sistema, e ciò porta alla già descritta costruzione in termini di
integrali di Chen. Tale problematica è approfondita in [30], in cui si studia più da vicino il limite
di stringa (a partire dal caso esteso) e si analizzano le discrepanze tra la quantizzazione geometrica
e quella canonica in dimensione 2, notando un possibile interessante collegamento con i gruppi
quantici.

Nel lavoro [26] si sviluppa una teoria di vortici puntuali su superficie di Riemann fisicamente
motivata, facendo uso della classica teoria di Abel-Jacobi-Riemann: si costruisce lo spazio delle
fasi naturale per una tale dinamica, (un prodotto di due spazi proiettivi associati ad uno spazio di
Riemann-Roch), descrivendo l’hamiltoniana per mezzo del teorema di fattorizzazione di Riemann in
termini di funzioni theta, facendo anche uso della teoria della funzione di Green.
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2.2. Principio di Indeterminazione di Heisenberg generalizzato. Proprietà degli stati coerenti.
Meccanica quantistica geometrica. Monodromia ([18], [28], [34], [38], [39], [40], [45])

Le tecniche della quantizzazione geometrica consentono poi di comprendere in modo nat-

urale il concetto di “stato coerente” (dovuto inizialmente a Schrödinger) e di grandissima

utilità in numerosi rami della Fisica. Qui possiamo solo ricordare che nel contesto delle va-

rietà Kähleriane (seguendo Rawnsley), gli stati coerenti sono essenzialmente sezioni olomorfe

del fibrato in questione indotte (attraverso il teorema di Riesz) dalla mappa di valutazione di

una sezione olomorfa in un punto della varietà.

Nel caso compatto si ritrova essenzialmente la mappa di immersione di Kodaira. Se in-

terpretiamo la varietà Kähleriana come lo spazio delle fasi di un sistema classico, gli stati

coerenti rappresentano gli stati quantistici che più si avvicinano ad un comportamento clas-

sico (vale a dire, essi minimizzano le relazioni di indeterminazione di Heisenberg e/o le loro

generalizzazioni). Nell’ambito della teoria dei gruppi l’introduzione degli stati coerenti risale

indipendentemente a Perelomov e Rasetti.

In [18] si studiano inoltre le proprietà di interesse fisico degli stati coerenti di Rawnsley in ter-
mini geometrico differenziale, pervenendo ad un Principio di Indeterminazione di Heisenberg gen-
eralizzato, e si identifica la dispersione invariante di Perelomov e Delbourgo con il quadrato di
un’applicazione momento. In [28] si fornisce una differente formulazione di stato coerente (equiva-
lente a quella di Rawnsley) e si deducono ulteriori proprietà geometriche e in particolare un criterio
di ampiezza di un fibrato lineare olomorfo positivo su una varietà Kähleriana in termini di diastasi
di Calabi. Come applicazione viene fornita una dimostrazione di tipo diastatico del teorema di Abel-
Jacobi e vengono dedotte nuove identità theta. Viene anche discusso il legame tra la quantizzazione
geometrica e la quantizzazione di Klauder in termini di integrali sui cammini (alla Feynman).

Il lavoro [34] (in collaborazione con A.Benvegnù e N.Sansonetto) si colloca invece nell’ambito
della cosiddetta meccanica quantistica geometrica, mirante a descrivere la meccanica quantistica
in termini di meccanica classica sullo spazio degli stati, dato dallo spazio proiettivo associato allo
spazio di Hilbert della teoria. Dimostriamo, in completa generalità, che in tal modo la dinamica
di Schrödinger é completamente integrabile, e che le probabilità di transizione diventano variabili
di azione. Mediante tale punto di vista si getta nuova luce sul fenomeno della fase di Berry, e sul
processo di misura, che riceve (nell’approccio dovuto a Bohm) una naturale descrizione in termini
di teoria geometrica degli invarianti. Inoltre, si calcola esplicitamente la funzione di partizione del
relativo ensemble canonico introdotta da Brody e Hughston tramite la formula di Duistermaat ed
Heckman (e anche in modo diretto).

Il lavoro [37] è una naturale prosecuzione di [34]; si discutono ulteriori proprietà geometriche
della dispersione, cui si associa in modo naturale un campo di Jacobi su una geodetica congiungente
due autostati dell’energia. In virtù dell’integrabilità della dinamica, se letta in modo classico, e
dell’interpretazione proiettiva (quali birapporti) delle probabilit‘a di transizione, risulta naturale as-
sociare a tale situazione una curva ellittica (toro algebrico) in cui si immerge il ciclo della dinamica.
Tali considerazioni conducono anche ad un’interpretazione “cinematica” della relazione di Legendre
tra integrali ellittici completi di prima e di seconda specie. Successivamente si discutono in modo
puramente geometrico le rappresentazioni irriducibili del gruppo delle trecce a tre fili (e conseguente-
mente del gruppo modulare), confrontandolo con l’approccio algebrico di L. Kauffman. In seguito,
si determina un criterio di intrecciamento (entanglement) per stati a più particelle in termini delle
applicazioni di Segre, successivamente esteso a intrecci parziali. Si reinterpreta la situazione relativa
allo spazio a 2-qubit (spazio proiettivo tridimensionale) in termini di geometria algebrica classica.
Infine, si nota l’emergere di una suggestiva struttura geometrica sottostante il processo di misura di
opportune generalizzazioni degli stati GHZ, che conduce ad un collegamento con i link Brunniani,
estendendo le pionieristiche osservazioni di P.K. Aravind. Tale approccio illustra anche esempi di
geometrie finite su F2.
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In [39] si discutono le proprietà idrodinamiche dei campi di Killing su una varietà Riemanniana
di dimensione finita, dimostrando che essi soddisfano l’equazione stazionaria di Eulero con termine
di pressione dato dal quadrato della lunghezza del campo. Si applica tale risultato al caso della
meccanica quantistica geometrica, ove il campo di Killing è il campo vettoriale fondamentale sullo
spazio proiettivo indotto dall’Hamiltoniana di Schrödinger. Si calcolano i punti critici della pressione
(essenzialmente, il quadrato della dispersione dell’hamiltoniana in un dato stato) e si discute una
possibile interpretazione idrodinamica del collasso della funzione d’onda. Nella prima parte del
lavoro, si fornisce un’interpretazione idrodinamica dello spin come vorticità di un fluido perfetto
bidimensionale.

Il lavoro [45] costituisce una rassegna dei lavori precedenti, e raccoglie parte del ciclo di conferenze
tenuto a Varna dal sottoscritto nel giugno 2011.

In [40] si discute la monodromia (classica e quantistica) dei sistemi Hamiltoniani bidimensionali
completamente integrabili dal punto di vista della quantizzazione geometrica (e della relativa teoria
di Bohr-Sommerfeld) utilizzando le funzioni theta. Si collega la monodromia alla libertà di scelta
di una connessione prequantistica e ad una nozione più fine di equivalenza di gauge. Inoltre si
prova l’esistenza di un’applicazione naturale che collega l’olonomia della connessione piatta canon-
ica associata alla monodromia (indotta dal carattere locale delle variabili di azione) a quella della
connessione del ”calore” sulle funzioni theta (di livello 2); in particolare la variazione del numero di
rotazione (indicatore della monodromia) su un cammino omotopicamente non banale dello spazio
base della fibrazione Lagrangiana (con singolarità) è collegata all’intreccio (braiding) di due delle
radici della cubica ellittica associata ad un dato toro lagrangiano. Il numero di rotazione assieme al
periodo di ”primo ritorno”, dànno vita al parametro modulare delle funzioni theta coinvolte. Il caso
classico del pendolo sferico viene riesaminato alla luce delle tecniche qui introdotte, esaminando il
braiding delle radici di due integrali ellittici di terza e prima specie (esprimenti appunto il numero
di rotazione e il periodo di primo ritorno, rispettivamente).

2.3. Quantizzazione geometrica del problema di Keplero ([7])
In questo lavoro si ritrova la quantizzazione geometrica del problema di Keplero (atomo di

idrogeno) dovuta a Simms in maniera particolarmente semplice e trasparente dal punto di vista
fisico; Il punto di partenza è la regolarizzazione di Kunstanheimo-Stiefel nella forma dovuta a Kum-
mer, il quale trasforma il sistema di Keplero in una collezione di quattro oscillatori classici vincolati;
la derivazione si basa sul teorema di immersione di Kodaira. La varietà simplettica ridotta, nel
senso di Marsden-Weinstein, associata ad un prefissato livello di energia (negativa) corrispondente
al prodotto cartesiano di due sfere di Riemann, che si immerge in uno spazio proiettivo complesso
tridimensionale tramite la mappa di Segre. I pull-back (rispetto a quest’ultima mappa) dei multipli
del fibrato sezione iperpiana sul proiettivo (le cui sezioni olomorfe forniscono i livelli energetici del
sistema di oscillatori) determinano i livelli energetici dell’atomo di idrogeno e la relativa molteplicità.

2.4. Ciclo di Maslov, dualità di Poincaré e materiali iperelastici. Applicazioni ai nodi ([23], [35])
Nel lavoro [23] proponiamo un’applicazione dell’indice di Maslov (che gioca un ruolo fondamentale

nella quantizzazione dei sistemi fisici, alla teoria dei materiali iperelastici generalizzati. Proponiamo
l’aggiunta, nel bilancio totale del lavoro delle forze interne lungo una curva (giacente su una sotto-
varietà lagrangiana di un opportuno fibrato cotangente rappresentante il materiale) di un termine
proporzionale all’indice di Maslov della curva. Ciò è suggerito dalla descrizione locale alla Maslov-
Hörmander del materiale, che appare come varietà critica associata ad una funzione di fase (famiglia
di Morse) rispetto ad alcuni parametri aggiuntivi, che in tale contesto vengono interpretati come po-
larizzazioni. L’attraversamento del ciclo di Maslov (punti della varietà in cui l’Hessiano è degenere)
corrisponde al passaggio tra due differenti domini strutturali del materiale e contribuisce ad una
sorta di lavoro latente di transizione. Tale contributo può essere ancora espresso come integrale di
una 1-forma, il duale di Poincarè del ciclo di Maslov.

Un analogo della teoria di Maslov per i nodi è sviluppato in [35] (con A.Besana).
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2.5. Relazioni canoniche di commutazione di Weyl- Heisenberg come curvatura di una connes-
sione (non commutativa) ([11])

Tale lavoro è fortemente ispirato a [5] e ne costituisce la generalizzazione al caso non commutativo.
Il campo diviene una connessione e le relazioni di commutazione esprimono la curvatura di questa.
La forma di Weyl associata si interpreta in termini di trasporto parallelo. Gli stati coerenti di Fock
divengono spazi di moduli di strutture olomorfe non commutative.

3. Applicazioni alla visione computazionale

Geometria riemanniana e visione computazionale ([42], [48])
M.S. ha recentemente cominciato a collaborare con alcuni informatici del suo dipartimento (del

gruppo VIPS, diretto dal Prof. V. Murino), su problemi legati alla visione computazionale, in parti-
colare la ricostruzione di immagini- che necessitano di tecniche avanzate di geometria riemanniana.
In [42] (accettato sugli atti dell’ECCV 2010) e con comunicazione orale, si è in particolare calcolata
e utilizzata la curvatura sezionale (non positiva) dello spazio delle matrici di covarianza. In [48] si
utilizza la formula di Campbell-Baker-Hausdorff per determinare una prima approssimazione della
distanza geodetica oltre quella euclidea, ottenendo prestazioni notevolmente superiori all’attuale
stato dell’arte in contesti di videosorveglianza.

*******
Altri lavori
Teoria C∗-algebrica dei campi quantizzati, [1-4]
Inizialmente M.S. ha preso le mosse dalla teoria algebrica dei campi quantizzati, nella quale è

stato introdotto dal Prof.S.Doplicher. Tale teoria inquadra la teoria quantistica dei campi nell’ambito
della teoria delle C∗-algebre e delle W∗-algebre. M.S. si è occupato in particolare, con S.Doplicher
([1],[2]) e S.Scarlatti ([4]) di questioni connesse al cosiddetto problema infrarosso per particolari
sistemi fisici, che matematicamente si traduce nella costruzione di rappresentazioni della C∗-algebra
associata al sistema fisico avente particolari proprietà.

Nella formulazione algebrica della teoria quantistica dei campi, dovuta a R. Haag e D.

Kastler, ad ogni sistema fisico viene associata una C∗-algebra (algebra “quasi locale”) limite

induttivo di C∗-algebre (dette locali) associate a regioni dello spazio-tempo e i cui elementi

autoaggiunti rappresentano, dal punto di vista fisico, le operazioni di misura che possono essere

condotte all’interno della regione (osservabili locali).

Tra le varie proprietà delle algebre locali della teoria di Haag-Kastler vie è il postulato di

covarianza relativistica, il quale richiede un’azione del gruppo universale di rivestimento del

gruppo di Poincaré ristretto tramite un gruppo di ∗-automorfismi dell’algebra che preservi la

struttura locale. Di grande importanza è lo studio delle rappresentazioni positive dell’algebra

quasi-locale, ossia di quelle rappresentazioni in cui il gruppo delle traslazioni sia unitariamente

implementato e tali che lo spettro congiunto dei generatori sia contenuto nel cono di luce futuro

C∗-algebra (nello spazio dei momenti) (“positività dell’energia” o “condizione spettrale”).

Tra queste ha particolare importanza la rappresentazione di Fock, ottenuta per mezzo della

rappresentazione di GNS (Gelfand-Naimark-Segal) a partire da un vettore ciclico invariante

sotto l’azione del gruppo di Poincaré ristretto. Un’altra proprietà importante dal punto di

vista fisico è la normalità locale, vale a dire la quasi-equivalenza della rappresentazione data

e della rappresentazione di Fock se ristrette ad una qualunque regione limitata dello spazio-

tempo. Prendendo in considerazione il cono di luce futuro o, rispettivamente, entrambi i coni,

si ottengono i concetti di “classe di carica” e di “classe di carica modificata”.

18



In [1] si dimostra (facendo uso del risultato di Glimm e Marechal che stabilisce che tutte le algebre
di von Neumann con preduale separabile si ottengono come chiusura debole di una rappresentazione
positiva dell’algebra quasi-locale associata al campo di Dirac (o di Majorana) libero di massa zero, in
questo caso la C∗-algebra pari delle Relazioni Canoniche di Anticommutazione (CAR). In particolare
i fattori di Powers si ottengono con una costruzione elementare (basata sugli stati quasi liberi delle
CAR dovuta a Powers e Størmer) che appare già nella tesi di laurea di M.S., e corrispondono a
rappresentazioni infrarosse “esotiche”.

Tale lavoro fornisce una risposta esauriente (e negativa) ad una congettura avanzata da D. Buch-
holz sul legame tra tipo dell’algebra di von Neumann locale e condizione spettrale.

In [2] ci si concentra su questi esempi e si costruiscono rappresentazioni normali sul cono di luce
futuro e disgiunte dalla rappresentazione di Fock sul cono di luce passato (e viceversa); si prova
poi esplicitamente la normalità locale. Decisiva è in particolare l’applicazione di una disuguaglianza
dovuta al sottoscritto.

In [3] si riesamina l’intera problematica alla luce di ulteriori risultati.
In [4] si prova parte di una congettura enunciata in [2] e [3]: nel caso del campo di Dirac libero

di massa zero ogni rappresentazione infrarossa (contenente solo “stati di particelle”) nella classe di
carica modificata è quasi-equivalente alla rappresentazione di Fock.
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Geometria Differenziale (corso di dottorato) (a.a.1992/93).
Introduzione alla teoria dei nodi (corso di dottorato) (gennaio-febbraio 2003).

Introduzione ai metodi geometrici e topologici dell’idrodinamica (corso di dottorato) (aprile-
giugno 2007)

Facoltà di Scienze M.F.N. (Università Cattolica del Sacro Cuore), Brescia
Analisi superiore (a.a.1992/93 e 1993/94)
Geometria superiore (10 mod.) (a.a. 1998/99)
Geometria 3 (a.a. 2010/11)
Geometria II (a.a. 2011/12)

Facoltà di Scienze M.F.N.(Milano)
Aspetti geometrici e combinatori della teoria dei nodi (corso di dottorato) (ottobre-novembre

2001).

Facoltà di Scienze M.F.N.(Verona)
Geometria (a.a. 2006/07; 2007/08; 2008/09; 2009/10; 2010/11; 2011/12)
Geometria Computazionale (modulo base a.a. 2007/08)
Algebra Lineare con Elementi di Geometria (modulo avanzato, a.a. 2007/08 - 2008/09; modulo:

Elementi di Geometria a.a. 2009/10; 2010/11; 2011/12)
Analisi I (per Bioinformatici; secondo modulo, a.a. 2007/08)
Elementi di Topologia (corso di dottorato per informatici, 2009)
Topologia e Geometria Differenziale (LM, a.a. 2009/10, 2010/11, 2011/12)

L’attività didattica è stata sempre svolta e continua a svolgersi con impegno e disponibilità nei
riguardi degli studenti. Inoltre M.S. ha sempre cercato di porgere la materia trattata, anche se
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standard, in modo originale, e ha prodotto dispense manoscritte contenenti l’intero programma di
tutti i corsi insegnati. Le note (scansionate) dei corsi impartiti nell’ateneo veronese sono disponibili
online alla pagina www.di.univr.it/̃ spera.

M.S. ha curato e cura attualmente lo svolgimento di tesi di laurea (vecchio e nuovo ordinamento)
e di dottorato (Padova, Ferrara, Milano, UCSC Brescia, Verona). In particolare, numerose sono le
tesi triennali di argomento geometrico seguite presso l’ateneo veronese.

Tesi di dottorato:
Dott. Alberto Besana - Università degli Studi di Milano
tesi: Framed knots, Lagrangian submanifolds and geometric quantization, marzo 2005.

Dott. Alberto Benvegnù - Università di Ferrara
tesi: Geometric aspects of quantum mechanics, febbraio 2007.
Ha spesso avuto occasione di orientare, negli anni padovani, anche laureandi in ingegneria

riguardo agli aspetti matematici del loro lavoro. Lo stesso avviene per gli studenti (in particolare di
dottorato) di informatica dell’ateneo veronese.

Altri corsi e conferenze
M.S. ha anche tenuto corsi e conferenze rivolte a studenti e insegnanti di scuola secondaria

superiore, tra cui
* L’analisi matematica tra intuizione e rigore

(autunno 1997) (10 ore, per insegnanti - UCSC Brescia).
* Lezione di Analisi Matematica (2 ore) di preparazione per i concorsi a cattedra (7/10/1999,

presso l’Editrice La Scuola, Brescia).
* L’eredità di Einstein

(conferenza divulgativa, Liceo C. Marzoli, Palazzolo sull’Oglio, 5/3/2007).
* La geometria proiettiva da Piero della Francesca alla visione computerizzata (conferenza Math-

esis di Brescia, 18/11/2007).

Compiti organizzativi
M. Spera ha fatto parte del Comitato Ordinatore di Ingegneria Meccatronica (Vicenza) e della

relativa Commissione Didattica, quale rappresentante per le materie di base, da settembre 2004 a
settembre 2006.

Presso l’Università di Verona ha svolto e svolge vari compiti organizzativi rivolti soprattutto
ai CCL L35-Matematica Applicata e LM40-Matematica (commissioni ufficiali e/o consultive per
l’adeguamento dell’ordinamento al DM 270 e per la Laurea Magistrale, per l’assegnazione di assegni
di ricerca e per il reclutamento, commissione paritetica per le due lauree).

È stato responsabile scientifico dell’assegno di ricerca AdR 819/07: “Geometria globale dei sis-
temi completamente integrabili”, usufruito dal Dott. Nicola SANSONETTO (1 maggio 2007 - 30
aprile 2008), concretizzatosi nel lavoro [40]. È stato responsabile scientifico dell’ assegno di ricerca
AdR 1083/08: “Meccanica quantistica geometrica e applicazioni”, usufruito dal Dott. Alberto BEN-
VEGNÙ (10 gennaio 2009 - 31 dicembre 2009, esteso fino al 31 maggio 2010), che è concretizzato
nel lavoro [47].
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APPENDICE: Breve curriculum (versione inglese)

Short CV - Mauro Spera

M.S. (Rome, 10th February 1958) is currently Associate Professor of Geometry, Faculty of Math-
ematical, Physical and Natural Sciences, University of Verona, Italy (since 22nd December 2006 -
previously in Padua, Faculty of Engineering, since 1st November 1999). He had been formerly As-
sistant Professor (“ricercatore”) in Analysis since 1984. He started his scientific career in operator
algebras (specifically algebraic quantum field theory) soon becoming strongly interested in geometry,
both classical and noncommutative, whilst keeping involved in mathematical and theoretical physics
issues throughout.

He mainly addresses infinite dimensional geometrical situations, combining a variety of tools com-
ing from differential geometry and algebraic topology together with functional analytical techniques,
partly coming from his earlier formation.

His present reseach interests (which are closely related to one another) include infinite dimen-
sional Grassmannians, geometric quantization and more generally, geometric methods in quantum
mechanics, vortex theory and link invariants, and loop space extensions of the index theory, and
application of Riemannian geometry to computer vision. He authored or coauthored more than
forty research papers on internationally renowned journals, interacts at various levels with many
distinguished scholars, and participated in several national and international conferences. He visited
at various stages the universities of Strasbourg and Metz and benefited from the RiP programme of
the Volkswagen Stiftung at the Mathematisches Forschungsinstitut in Oberwolfach in 1997.

He has been Associate Editor of the Journal of Geometry and Symmetry in Physics (Editor in
Chief: Ivailo Mladenov, Bulgarian Academy of Sciences, Sofia, BG), 2003-2008.

He gave (under)graduate and postgraduate level courses - in Padua, Brescia (Catholic University),
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and has produced (handwritten) lecture notes for every course he gave. He has been advisor of two
Ph.D. students in Mathematics (in Milan and Ferrara, respectively). A list of selected publications
is herewith attached.

Mauro Spera - Selected Publications
updated to April 2012

[1] S. Doplicher, M. Spera Representations Obeying the Spectrum Condition
Comm.Math.Phys. 84 (1982), 505-513.

[2] S. Doplicher, M. Spera Local Normality Properties of Some Infrared Representations
Comm.Math.Phys. 89 (1983), 19-25.

[3] M. Spera Quantization on Abelian Varieties
Rend.Sem.Mat.Politec.Torino 44 (1986), 383-392.

[4] G. Gaeta, M. Spera Remarks on the Geometric Quantization of the Kepler Problem
Lett.Math.Phys 16 (1988), 189-197.

[5] M. Spera Yang Mills Theory in Non Commutative Differential Geometry
Proceedings of the Workshop on Differential Geometry and Topology, Cala Gonone, 1988.
R. Caddeo and F. Tricerri (eds.)
Rend.Sem.Mat.Fac. Sc.Univ.Cagliari Suppl.V.58 (1988), 409-421.

26



[6] V. Penna, M. Spera A Geometric Approach to Quantum Vortices
J.Math.Phys 30 (1989), 2278-2284.

[7] V. Penna, M. Rasetti, M. Spera Iterated Path Integral Realization of Quantum Vortex Currents:
Construction of the Topological Invariants

Intl.J.Mod Phys.B 4 (1990), 1289-1315.

[8] M. Spera Sobolev Theory for Non Commutative Tori
Rend.Sem.Mat.Univ.Padova 86(1991), 143-156.

[9] V. Penna, M. Spera On Coadjoint Orbits of Rotational Perfect Fluids
J.Math.Phys 33 (1992), 901-909.

[10] M. Spera A Symplectic Approach to Yang Mills Theory for Non Commutative Tori
Canad.J.Math. 44 (1992), 368-387.

[11] M. Spera, G. Valli Remarks on Calabi’s Diastasis Function and Coherent States
Quart.J.Math.44 (1993), 497-512.

[12] M. Spera On a Generalized Uncertainty Principle, Coherent States, and the Moment Map
J.Geom.Phys.12 (1993), 165-182.

[13] M. Spera A Note on Yang Mills Minima on Rieffel Modules Over Higher Dimensional Non
Commutative Tori

Boll.Un.Mat.Ital. 8-A (1994), 365-375.
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Mauro Spera: current research interests
• Loop space extensions of the index theory. Infinite dimensional differential geometry of mani-

folds emerging in quantum field theory.
([16][20][22][24][27][29][32][34][37])

• Geometric quantization, coherent states and geometric quantum mechanics: general aspects.
([3][4][12][19][25][28][30][31][35][36])

•Geometric aspects of vortex theory and link invariants. Singular knot spaces and their geometric
quantization (à la Brylinski),(semi)classical mechanical description of link invariants.
([6][7][9][17][18][21][23][26][27])

• Applications of Riemannian geometry to problems in computer vision.
([33])
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