

CURRICULUM VITÆ

Massimo Merro

Professor in Computer Science

1 General information

Address

Department of Computer Science, University of Verona,
Strada le Grazie 15, 37134 Verona (Italy)
Phone: (+39) 045 802 7992
E-mail: massimo.merro@univr.it
Web: <http://profs.scienze.univr.it/~merro/>

Qualifications and positions

- *Full Professor* in Computer Science at University of Verona (2018-).
- *Coordinator of the PhD Program* in Computer Science of Verona (2016-2022).
- *Associate Professor* in Computer Science at University of Verona (2006-2018).
- *Assistant Professor* in Computer Science at University of Verona (2002-2006).
- *Research Fellow* at the Laboratoire des Méthodes de Programmation, Institute d’Informatique Fondamentale, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2002).
- *Research Fellow* at the School of Cognitive and Computing Science, University of Sussex, UK (2000-2002).

Diplomas

- *PhD in Computer Science*, with full marks and honours, École Nationale Supérieure des Mines de Paris at Sophia-Antipolis, France (2000). Thesis title: “Locality in the π -calculus and applications to distributed objects”. Supervisor: Dr. Davide Sangiorgi. Funded by a 18 months *TMR Marie Curie Research Training Grant*.
- *Master (Laurea) degree cum Laude* in Computer Science, University of Pisa, Italy (1996). Thesis title: “Priorities in Statecharts”. Supervisor: Prof. Andrea Maggiolo-Schettini.

Research interests

- Semantic foundations of cyber-physical systems and IoT systems.
- Security analysis of cyber-physical systems and IoT systems.
- Formal verification of complex systems via semantic techniques and static analysis.
- Semantic foundations of programming languages for concurrent, distributed, and mobile systems.

2 Research activity

2.1 Bibliometrics

Scopus Elsevier

Data has been extracted on February 12th, 2025.

- indexed articles: 73
- citations: 1238
- h-index: 23

Google Scholar

Data has been extracted on February 12th, 2025.

- citations: 2067
- h-index: 26
- i10-index: 51

2.2 Program committees

- 20° *International Conference on Availability, Reliability and Security* (ARES'24), Ghent, Belgium, 2024.
- 7° *International Workshop on Verification and mOnitoring at Runtime EXecution* (VORTEX'22), Berlin, Germany, 2022.
- 42° *IFIP International Conference on Formal Techniques for Distributed Objects, Components and Systems* (FORTE'22), Lucca, Italy, 2022.
- 7° International Conference on Cyber-Technologies and Cyber-Systems (CYBER 2022), Valencia, Spain, 2022.
- 6° International Conference on Cyber-Technologies and Cyber-Systems (CYBER 2021), Barcelona, Spain, 2021.
- 1° *IEEE International Conference on Internet of Things and Intelligent Applications* (ITIA'20), Zhenjiang, China, 2020.
- 20° *Italian Conference on Theoretical Computer Science* (ICTCS'19), Como, Italy, 2019.
- 14° *International Conference on Embedded Software* (EMSOFT'17), Seoul, South Korea, 2017.
- 36° *IFIP International Conference on Formal Techniques for Distributed Objects, Components and Systems* (FORTE'16), Heraklion, Crete, 2016.
- 43° *International Colloquium on Automata, Languages and Programming* (ICALP'16) – Track B: Logic, Semantics, Automata and Theory of Programming, Rome, Italy, 2016.
- 42° *International Colloquium on Automata, Languages and Programming* (ICALP'15) – Track C: Foundations of Networked Computation: Models, Algorithms and Information Management, Kyoto, Japan, 2015.
- 38° *International Colloquium on Automata, Languages and Programming* (ICALP'11) – Track C: Foundations of Networked Computation: Models, Algorithms and Information Management, Zurich, Switzerland, 2011.
- 4° *International Conference on Frontier of Computer Science and Technology* (FCST'09), Shanghai, China, 2009.
- 2° *International Workshop on Formal Methods for Wireless Systems* (FMWS'09), Bologna, Italy, 2009.
- 2° *International Meeting on Membrane Computing and Biologically Inspired Process Calculi* (MeCBIC'08), Iasi, Romania, 2008.

- 1° *International Workshop on Formal Methods for Wireless Systems* (FMWS'08), Toronto, Canada, 2008.
- 17° *International Conference on Concurrency Theory* (CONCUR'06), Bonn, Germany, 2006.
- 10° *International Workshop on Expressivity in Concurrency* (EXPRESS'03), Marseilles, France, 2003.
- 9° *International Workshop on Expressivity in Concurrency* (EXPRESS'02), Brno, Czech Republic, 2002.

2.3 Editorial boards

- Editor of *Open Computer Science*, <http://www.degruyter.com/view/j/comp> (2015-);
- Review Editor of *Frontiers in ICT, Computer and Network Security*, (2014-)
<http://journal.frontiersin.org/journal/ict/section/computer-and-network-security>;
- Associate Editor of *Mobile Information Systems*, (2014-)
<https://www.hindawi.com/journals/misy/>;

2.4 Supervision of research students and fellows

- Research Fellow, Dr. Denis Donadel. Titolo del progetto: *Advanced ICS Honeypots*, Università degli Studi di Verona, 2024-present.
- PhD student, Marco Lucchese. Thesis title: *Design, implementation and evaluation of a physics-aware honeynet for Industrial Control Systems*. Università degli Studi di Verona, 2020-2024.
- Research Fellow, Dr. Youssef Driouich. Project title: *Process Comprehension of Industrial Physical Processes*, Università degli Studi di Verona, 2022.
- PhD student, Dr. Andrei Munteanu. Thesis title: *Formal Approaches to Control Systems Security: From Static Analysis to Runtime Enforcement*, Università degli Studi di Verona, 2017-2021.
- Research Fellow, Dr. Michele Pasqua. Title of the project: *Security Static Analysis for Internet of Things*, University of Verona, 2019-2020.
- Research Fellow Dr. Fabio Mogavero. Title of the project: *Formal Verification of Cyber-Physical System Security*, University of Verona, 2018.
- PhD student, Dr. Andrei Munteanu. Thesis title: *Formal Security Verification of Cyber-Physical Systems*. University of Verona, 2018-2020.
- PhD student Dr. Eleonora Sibilio. Thesis title: *Formal Methods for Wireless Systems*. Università degli Studi di Verona, 2011.
- External PhD student Dr. Leckraj Nagowah. Thesis title: *Formal Methods for Securing IoT Systems*. University of Mauritius, Moka, 2017-.
- Visiting PhD student Dr. Mojgan Kamali, Abo Akademi University, Turku, Finland. Project title: Statistical model checking of ad hoc routing protocols. Sep-Dec 2016.
- Research Fellow Dr. Damiano Macedonio. Project title: *Formal Verification of Wireless Network Protocols*, Università degli Studi di Verona, 2011-2013.
- Research Fellow of 12 months to be assigned. Project title: *Formal Tools for Cyber-Physical System Security*, Università degli Studi di Verona, July 2017.

The research activity of Dr. Merro has focused on the semantic foundations of *concurrent, distributed and mobile systems*. More recently, Dr. Merro has turned his attention to *wireless systems*, spanning both semantic foundations and formal verification of ad-hoc networks protocols. Dr. Merro is also working on the semantic foundations of the *Internet of Things*, paying particular attention to providing solid foundations for the formal verification of the security of such systems, and, more generally, of the security of *cyber-physical systems*.

Models for Concurrent Languages Papers [70, 66, 21, 72] study a variant of Milner's π -calculus, called Local π , as a core model for *concurrent and/or distributed programming languages*, such as Pierce and Turner's *Pict*, Fournet and Gonthier's *Join*, and Boudol's *Blue*. Those papers show that Local π retains much of the expressive power of the π -calculus. Papers [70, 21] study the semantic theory of Local π , focusing on *bisimulation-based* behavioural equivalences. In [68] special processes, called *equators*, are investigated. Equators have been proposed by Honda to model equivalence relations over channel names. Paper [69] studies the relationship between equators and the *fusions* of names, in the style of Parrow and Victor's *Fusion calculus*. In their work, Parrow and Victor argued that Fusion calculus is strictly more expressive than π -calculus. Paper [69] shows that this is not the case by providing a fully abstract encoding of (an asynchronous variant of) Fusion calculus into (an asynchronous variant of) π -calculus.

Semantics of Concurrent Languages Modern programming languages achieve concurrency through multithreading, which translates into true parallelism on multicore hardware. Thus, writing complex and correct multithreaded software is essential to exploit the full computing power of current and future hardware; it is also a natural choice for web services; cloud computing, avionics, aerospace and car industry. However, synchronisation has a cost; *data races* lead to subtle and non-repeatable bugs. languages.

To prevent concurrency errors, programmers need to obey a *locking discipline*. Annotations that specify that discipline, such as Java's `@GuardedBy`, are already widely used. Papers [45, ?] provide the first formalisation of the semantics of `@GuardedBy`, building on an operational semantics for a small concurrent fragment of a Java-like language. These two papers precisely identify when such annotations are actual guarantees against data races. The results in [45, ?] have been used to extend the Julia static analyser to check and infer `@GuardedBy` annotations in arbitrary Java code. This work is at the core of the Joint Project named "Static Analysis for Multithreading", where Dr. Merro is the principal investigator.

Semantics of Distributed Object-oriented Languages Papers [67, 23] solved an open problem in Cardelli's distributed object-oriented programming language *Obliq*. In this setting, Cardelli proposed that *object migration* can be derived from two other primitives, *cloning* and *aliasing*, by performing one after the other. In concurrent and distributed programs, it is important that certain state changes may happen transparently from the point of view of the rest of the system. Ensuring that the implementation of such state changes is in fact transparent can be a difficult task since the programmer must, in principle, anticipates all possible execution scenarios. Thus, the open issue was whether object migration in *Obliq* is transparent to object's clients, and how that could be formally proved.

Following Cardelli's original semantics, papers [67, 23] give a formal semantics for (an appropriate abstraction of) *Obliq*. The language is equipped with a standard notion of program equivalence defined in terms of "may convergence". The correctness of migration is then formalised by means of a simple equation saying that the behaviour of a migrating object must be preserved after migration. Surprisingly, this equation is not valid in Cardelli's semantics. Some counterexamples show that object-migration is not transparent to object's clients. As a solution, papers [65, 22, 72] provide an amended variant of the original semantics of *Obliq* in Local π , and present a formal proof of the desired equation for a wide class of *Obliq* programs.

Semantics of Distributed and Mobile Languages Dr. Merro has worked on algebraic models for distributed programming languages supporting code mobility, such as *D π* (Hennessy and Riely 1998) and *Ambients* (Cardelli and Gordon 1998). In calculi with code mobility, one of the major open problems was to define an appropriate notion of labelled bisimilarity based on some standard contextual behavioural equivalence. Papers [64, 17] define a labelled bisimilarity for an extension of *Safe Ambients* (Levi and Sangiorgi 1999). The main result is that, in such setting, the labelled bisimilarity is both sound and

complete with respect to a standard contextual equivalence. Characterisations of contextual equivalences in higher-order languages are rare and notoriously hard, in particular in the presence of private names. The result appeared in [64, 17] is the first one for process calculi with code mobility. Then, Dr. Merro focussed on type theory, working on the definition of appropriate type systems to control code mobility in Ambient calculi [63, 62, 19]. This knowledge has then been used to extend $D\pi$ with a typed semantics theory [61, 20]. Finally, the work in [64, 17] has been refined in [60, 58, 18] to provide a bisimulation-based semantic theory of the original Ambient calculus of Cardelli and Gordon.¹

Foundations of Wireless Systems Many technical challenges have emerged in the design of robust and secure wireless networks. This because wireless communications brings a dynamic aspect into the digital environment and extends security-related requirements.

Papers [56, 15] proposed the first process calculus for *mobile* ad hoc networks, providing a semantics theory and a labelled characterisation of a standard contextual equivalence.² This model has been subsequently extended in [55, 13] with a discrete notion of time to provide a proper formalisation of *communication collisions*, a well-known problem in wireless systems which has a strong impact on communication performance. Papers [48, 10] extend and generalise the work in [13] by providing a fully abstract characterisation of a standard contextual equivalence in terms of a non-trivial labelled bisimilarity.³

Formal Verification of Protocols for Ad Hoc Networks Most of the analyses of protocols for wireless networks are usually based on discrete-event simulators (e.g., ns-2, Opnet and Glomosim). However, different simulators often support different models of the MAC physical-layer yielding different results. On the other hand, formal analysis techniques allow to screen protocols for flaws and to exhibit counterexamples to diagnose them.

Many protocols for wireless networks rely on a common notion of time among the devices at MAC layer. The correctness of *clock synchronization protocols* is quite unexplored and many attacks in wireless systems consist in preventing node synchronization. Paper [49] does *statistical model-checking* to verify the gMAC protocol, a clock synchronization protocols proposed within the EU Project QUASIMODO. The main result is that the protocol fails to correctly synchronise nodes, when considering lossy communication.

Gossip protocols are at the intermediate Gossip layer which is responsible for insertion of new messages, forwarding of current messages and deletion of old messages. Paper [51] defines a simple probabilistic timed process calculus equipped with a simulation theory to compare probabilistic protocols that have similar behaviour up to a certain probability. This theory is then used to prove a number of algebraic laws which revealed to be very effective to evaluate the performance of gossip networks with and without communication collisions.

Ad hoc networks rely on multi-hop wireless communications where nodes have essentially two roles: (i) acting as end-systems and (ii) performing routing functions. *Ad hoc routing protocol* are fundamental to determine the appropriate paths on which data should be transmitted in a wireless network. In papers [47, 40] the performances of the AODV routing protocol and its 15-years-later variant DYMO are compared, in terms of route established, by applying statistical model-checking. The main result is that, in contradiction with a recent result by Höfner and McIver, Dymo performs better than AODV on networks of significant size.

Security Aspects of Wireless Systems Ad hoc routing protocols are exposed to several kinds of attacks. Thus, many “secured” versions of routing protocols have been proposed to work in an adversarial setting. However, security protocols are notoriously difficult to get right. Paper [53] applies model-checking techniques on two secure ad hoc routing protocols: ARAN and endairA. The analysis found two different attacks on ARAN.

In the last 30 years, several efforts have been made to prevent unauthorized information flow in multilevel computer systems. The seminal idea of non-interference (Goguen and Meseguer 1982) aims

¹In the VQR 2004-2010 national evaluation, both papers [18, 17] have been evaluated as “excellent” (score 1).

²In the VQR 2004-2010 national evaluation, paper [15] has been evaluated as “excellent” (score 1).

³Paper [48] got the DisCoTec 2013 best paper award.

at assuring that information can only flow from low levels to higher ones. The first taxonomy of non-interference-like properties has been uniformly defined and compared by Focardi and Gorrieri. Papers [52, 50, 11] extend and generalise Gorrieri and Martinelli's tGNDC property to perform a *semantic security analysis* on three well-known *key management protocols* for wireless sensor networks: μ TESLA, LEAP+ and LiSP. The analysis found two replay attacks in the last two protocols.

Trust Management (TM) is a general approach to specifying and interpreting security policies, credentials, and trusting relationships. In highly dynamic setting a formal treatment of trust management revealed to be quite challenging. Papers [54, 12] proposes a security-based process calculus for mobile ad hoc networks which relies on an abstract *behaviour-based multilevel trust model*. Communication in the calculus are safe with respect to the security levels of the involved parties. In particular, *safety despite compromise* is ensured: compromised nodes cannot affect the rest of the network. A *non-interference* result is also proved in terms of information flow.

Semantic and Security Foundations of IoT Systems In the Internet of Things (IoT) paradigm, smart objects interact among themselves and with the physical environment by exchanging physical and logical data. The current research on IoT is mainly focusing on practical applications such as the development of enabling technologies, ad hoc architectures, semantic web technologies, and cloud computing. However, there is a lack of research on the modelling and the validation of IoT systems through formal methodologies.

The articles [46, 9] propose a process calculus for IoT systems and the first fully abstract semantic theory for such systems. Note that the design of a process calculus that models a new paradigm requires understanding and subsequently distilling the main aspects of the paradigm into a simple and elegant algebraic environment. In the two aforementioned articles, a process calculus is proposed with classical operational semantics: a reduction semantics and a labeled transition system. To demonstrate the goodness of the two definitions, it is proven that the two operational semantics coincide (Harmony theorem). A notion of bisimulation is then provided, defined based on the labeled transition system. The main contribution of the two articles is a result of full abstraction, where labeled bisimulation completely characterizes the barbed congruence of the language. Note that, unlike previously seen mobile process calculi, both the calculus in question and its related bisimulation are first-order, greatly simplifying the semantic theory.

IoT platforms enable users to connect various smart devices and online services through reactive apps running in the cloud. These apps, often developed by third parties, perform simple calculations on data activated by external sources of information and implement the results of these calculations on external information repositories. Recent research shows that unintended or malicious interactions among different (even benign) user apps can pose serious security risks. These studies leverage program analysis techniques to create tools capable of uncovering unforeseen interferences between apps for specific use cases. Despite these initial efforts, there is still a lack of a semantic framework to understand interactions among IoT apps.

In the articles [35, 5], a semantic framework is proposed that captures the essence of *interactions among apps in IoT platforms*. The framework generalizes and connects syntactic application mechanisms to security notions based on bisimulation, providing a baseline for formulating robustness criteria for these application mechanisms. Specifically, we present a calculus that models the behavioral semantics of a system of concurrently executed apps and use it to define desirable semantic policies for the security and protection of IoT apps. To demonstrate the utility of our framework, we define and implement static analyses to enforce security and protection among apps, proving their validity with respect to our semantic conditions. We also leverage real-world apps to validate the practical benefits of our tools based on the proposed application mechanisms.

Formal semantics for cyber-physical systems In the articles [46, 9], the physical component of systems has been appropriately abstracted to provide a sufficiently manageable calculus for reasoning about IoT systems. However, this becomes challenging when transitioning to cyber-physical systems, which often model highly complex physical processes typically represented through a system of differential equations (or difference equations). The articles [43, 6] propose a hybrid process calculus to specify and reason about cyber-physical systems. In this calculus, a clear distinction is made between the phys-

ical part of the system (often referred to as the "plant") and the cyber part, identified by the controller and other supervisory components of the entire system. In the article [43], the first bisimulation for cyber-physical systems is defined, enabling compositional reasoning. The composability of behavioral semantics is crucial given the potentially large scale of the systems in question. In the article [6], we introduce a probabilistic version of the calculus for modeling and studying CPSs. The dynamics of the calculus are expressed in terms of a probabilistic labeled transition system in the style of SOS by Plotkin. This is used to define a probabilistic behavioral semantics. For a precise comparison between CPSs, we provide two compositional probabilistic metrics to formalize the notion of behavioral distance between systems, even in the case of time-bounded computations.

Security of cyber-physical systems In the article [42], the calculus proposed in [43] is extended to provide a formal treatment of cyber-physical attacks of *integrity* and *DoS* types on physical devices such as sensors and actuators. The objective is to formalize a *threat model* for CPSs and study attacks on physical devices. In defining the threat model, particular attention is given to modeling the temporal aspects of the attack, including its start and duration. For example, an attack launched when the system is in a physical state close to the threshold of admissibility might be highly successful. However, the duration of the attack can also be crucial: the disruption of a chemical reactor might take only a few minutes, the breakdown of an engine might require hours, and the destruction of centrifuges might take months. The work in [42] represents a crucial step in the development of semi-automatic tools for the *static verification of the security of cyber-physical systems*. Static analysis of CPSs is the main focus of the article [36], laying the foundations for model checking techniques for the analysis of linear cyber-physical systems supported by dedicated logics, oriented towards the static detection of cyber-physical attacks. The articles [39, 34, 27] showcase examples of increasingly complex cyber-physical systems where static security analysis is performed using *model-checking* or *statistical model-checking* tools. In particular, the article [27] studies the impact of *coordinated attacks* that achieve their malicious goal by operating simultaneously on different components of the system under attack.

The articles [37, 31] represent a first step towards defining formal metrics for quantifying the *impact of cyber-physical attacks* on the physical processes at the core of cyber-physical systems. These works are based on the definition of appropriate timed probabilistic behavioral metrics.

The articles [28, 1] provide a formal framework for quantitative analysis of attacks on sensors in industrial systems, using the formalism of differential dynamic logic. Given a precondition and a postcondition of a system, we formalize two notions of quantitative security: forward quantitative security and backward quantitative security, expressing respectively (1) how strong the strongest postcondition of the system is regarding the specified postcondition, and (2) how strong the specified precondition is regarding the weakest precondition. We introduce two notions, forward and backward *robustness*, to characterize a system's robustness against sensor attacks as a loss of security. To reason about robustness, two simulation distances have been developed, characterizing the upper bounds of the degree of forward and backward security loss caused by sensor attacks. We verify the two simulation distances by expressing them as formulas in differential dynamic logic. An example of an autonomous vehicle avoiding a collision is presented.

Recently published scanning data on Shodan shows that thousands of industrial control systems (ICS) are directly accessible from the Internet. In particular, highly sensitive components such as programmable logic controllers (PLCs) are potentially vulnerable to various types of attacks. On the other hand, to carry out non-trivial cyber-physical attacks, the attacker must possess a sufficient understanding of the physical processes within the target ICS. In articles [25, 2], we explore the feasibility of designing obfuscation strategies to prevent the attacker from understanding the behavior of the physical process within an ICS by accessing the memory registers of the PLC. We propose two generic obfuscation strategies for PLC memories, involving memory registers, PLC code, and simulated physical processes controlled by obfuscated PLCs. We then measure the effectiveness of the proposed obfuscation strategies in terms of power, resilience, and cost on a non-trivial case study.

Finally, in recent years, Dr. Merro has been involved in the development of honeypots for industrial systems. In the industrial context, honeypots are effective countermeasures both for defending against such attacks and for discovering new attack strategies. In recent years, honeypots for Industrial Control Systems (ICS) have made significant progress in faithfully emulating OT networks, including interactions

with physical processes. In the articles [29, 26], we propose HoneyICS, a high-interaction honeynet sensitive to physical aspects, scalable, and extensible for industrial systems, equipped with an advanced monitoring system. We exposed our honeynet to the Internet and conducted experiments to evaluate the effectiveness of HoneyICS. In particular, the article [24] presents a longitudinal study on a dataset comprising interactions from both IT and ICS collected by an instance of HoneyICS exposed to the Internet for three months. The study focuses on three orthogonal aspects of these interactions: the level of interaction, the origin of interactions, and patterns of interaction/attack. Our results shed light on the impact of different choices in configuring a honeynet in terms of attractiveness and captured behavior.

2.5 Publications

In the following list of papers, alphabetical order for authors means equal contribution in the paper. On the contrary, when the alphabetic order is not respected, the first author gave a major contribution.

International journals

- [1] J. Xiang, R. Lanotte, S. Tini, S. Chong, M. Merro. Measuring Robustness in Cyber-Physical Systems under Sensor Attacks. *Nonlinear Analysis: Hybrid Systems* vol 56:101559:1-27, 2025.
- [2] V. Cozza, M. Dalla Preda, R. Lanotte, M. Lucchese, M. Merro, N. Zannone. Obfuscation Strategies for Industrial Control Systems. *International Journal of Critical Infrastructure Protection* vol 47:100717:1-16, 2024.
- [3] R. Lanotte, M. Merro, and A. Munteanu Industrial Control Systems Security via Runtime Enforcement. *ACM Transactions on Privacy and Security*, vol 26(1): 4:1-4:41, 2023.
- [4] R. Lanotte, M. Merro and A. Munteanu. A process calculus approach to detection and mitigation of PLC malware. *Theoretical Computer Science*, vol. 890, pp. 125-146, 2021.
- [5] M. Balliu, M. Merro and M. Pasqua, M. Shcherbakov. Friendly Fire: Cross-App Interactions in IoT Platforms. *ACM Transactions on Privacy and Security*, 24(3):16:1-16:40, 2021.
- [6] R. Lanotte, M. Merro and S. Tini. A Probabilistic Calculus of Cyber-Physical Systems. *Information and Computation*, vol. 279, n. 104618, pp. 1-35, 2021.
- [7] R. Lanotte, M. Merro and A. Munteanu, L. Viganò. A Formal Approach to Physics-based Attacks in Cyber-physical Systems. *ACM Transactions on Privacy and Security*, 23(1):3:1-3:41, 2020.
- [8] R. Lanotte, M. Merro and S. Tini. Equational Reasonings in Wireless Network Gossip Protocols. *Logical Methods in Computer Science*, 14(3):1-47, 2018.
- [9] R. Lanotte and M. Merro. A Semantic Theory of the Internet of Things, *Information and Computation*, 259(1):72-101, 2018.
- [10] A. Cerone, M. Hennessy, M. Merro. Modelling MAC-Layer Communications in Wireless Systems. *Logical Methods in Computer Science*, 11(1), paper 18, 1-59, 2015.
- [11] D. Macedonio and M. Merro. A semantic analysis of key management protocols for wireless sensor networks. *Science of Computer Programming*, 81:53-78, 2014.
- [12] M. Merro and E. Sibilio. A Calculus of Trustworthy Ad Hoc Networks. *Formal Aspects of Computing* 25(5):801-832, 2013.
- [13] M. Merro, F. Ballardini and E. Sibilio. A Timed Calculus for Wireless Systems. *Theoretical Computer Science* 412(47):6585-6611, 2011.
- [14] M. Merro. An Observational Theory of the CPS-calculus. *Acta Informatica* 47(2):111-132, 2010.
- [15] M. Merro. An Observational Theory for Mobile Ad Hoc Networks (full paper). *Information & Computation* 207(2):194-208, 2009.

- [16] R. Fuzzati, M. Merro and U. Nestmann. Distributed Consensus, Revisited. *Acta Informatica* 44(26):377-425, 2007.
- [17] M. Merro and M. Hennessy. A Bisimulation-based Semantic Theory of Safe Ambients. *ACM Transactions on Programming Languages and Systems* 28(2):290-330, 2006.
- [18] M. Merro and F. Zappa Nardelli. Behavioural Theory for Mobile Ambients. *Journal of the ACM* 52(6):961-1023, 2005.
- [19] M. Bugliesi, S. Crafa, M. Merro and V. Sassone. Communication and Mobility Control in Boxed Ambients. *Information & Computation* 202(1):39-86, 2005.
- [20] M. Hennessy, M. Merro and J. Rathke. Towards a behavioural theory of access and mobility control in distributed systems. *Theoretical Computer Science* 322(3):615-669, 2004.
- [21] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. *Mathematical Structures in Computer Science* 14(5):715-767, 2004.
- [22] M. Merro, J. Kleist and U. Nestmann. Mobile Objects as Mobile Processes. *Information & Computation* 177(2):195-241, 2002.
- [23] U. Nestmann, H. Hüttel, J. Kleist and M. Merro. Aliasing Models for Mobile Objects. *Information & Computation* 175(1):3-33, 2002.

International conferences and symposia

- [24] F. Lupia, M. Lucchese, M. Merro and N. Zannone. ICS Honeypot Interactions: A Latitudinal Study. In *2023 IEEE International Conference on Big Data (IEEE BigData 2023)*, IEE, pp. 1-10, 2023.
- [25] V. Cozza, M. Dalla Preda, M. Lucchese, M. Merro and N. Zannone. Towards Obfuscation of Programmable Logic Controllers. In *18th International Conference on Availability, Reliability and Security (ARES 2023)*, ACM, pp. 121:1-121:10, 2023.
- [26] M. Lucchese, F. Lupia, M. Merro, F. Paci, N. Zannone and A. Furfaro. HoneyICS: A High-interaction Physics-aware Honeynet for Industrial Control Systems. In *18th International Conference on Availability, Reliability and Security (ARES 2023)*, ACM, pp. 113:1-113:10, 2023.
- [27] R. Lanotte, M. Merro and N. Zannone. Impact Analysis of Coordinated Cyber-Physical Attacks via Statistical Model Checking: A Case Study. In *43rd IFIP WG 6.1 International Conference on Formal Techniques for Distributed Objects, Components, and Systems (FORTE 2023)*. Volume 13910 of Lecture Notes in Computer Science, pp. 75-95, Springer, 2023.
- [28] S. Chong, R. Lanotte, M. Merro, S. Tini and J. Xiang. Quantitative Robustness Analysis of Sensor Attacks on Cyber-Physical Systems. In *26th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2023)*, ACM, pp. 20:1-20:12, 2023.
- [29] M. Lucchese, M. Merro, F. Paci and N. Zannone. Towards A High-interaction Physics-aware Honeynet for Industrial Control Systems. In *38th ACM/SIGAPP Symposium on Applied Computing (SAC 2022)*, pp. 76-79, ACM, 2023.
- [30] M. Ceccato, Y. Driouich, R. Lanotte, M. Lucchese and M. Merro. Towards Reverse Engineering of Industrial Physical Processes. In *3rd Cyber-Physical Security for Critical Infrastructures Protection (CPS4CIP 2022)*, Volume 13785 of Lecture Notes in Computer Science, pp. 273-290, Springer, 2023.
- [31] R. Lanotte, M. Merro, A. Munteanu, and S. Tini. Formal Impact Metrics for Cyber-physical Attacks. In *34th IEEE Computer Security Foundations Symposium (CSF'21)*. IEEE Computer Society, pp. 1-16, 2021.
- [32] R. Lanotte, M. Merro, and A. Munteanu. A Process Calculus Approach to Correctness Enforcement of PLCs. In *21st Italian Conference on Theoretical Computer Science (ICTCS'20)*. CEUR Workshop Proceedings, pp. 81-94, 2020.

[33] R. Lanotte, M. Merro, and A. Munteanu. Runtime Enforcements for Control System Security. In *33th IEEE Computer Security Foundations Symposium (CSF'20)*. IEEE Computer Society, pp. 246-261, 2020.

[34] A. Munteanu, M. Pasqua and M. Merro, Impact Analysis of Cyber-Physical Attacks on a Water Tank System via Statistical Model Checking. In *8th ACM/IEEE International Conference on Formal Methods in Software Engineering (Formalise'20)*. ACM, pp. 34-43, 2020.

[35] M. Balliu, M. Merro and M. Pasqua. Securing cross-app interactions in IoT platforms. In *32th IEEE Computer Security Foundations Symposium (CSF'19)*, IEEE Computer society, pp. 319-334, 2019.

[36] R. Lanotte, F. Mogavero and M. Merro. On the decidability of linear bounded periodic cyber-physical systems. In *22nd ACM International Conference of Hybrid Systems: Computation and Control (HSCC 2018)*, pp. 87-98, ACM Press, 2019.

[37] R. Lanotte, M. Merro and S. Tini. Towards a formal notion of impact metric for cyber-physical attacks. In *14th International Conference on integrated Formal Methods (iFM 2018)*, Volume 11023 of Lecture Notes in Computer Science, pp. 296-315, Springer, 2018.

[38] A. Munteanu, R. Muradore, M. Merro and P. Fiorini. On cyber-physical attacks in bilateral tele-operation systems: An experimental analysis. In *1st IEEE International Conference on Industrial Cyber-Physical Systems (ICPS-2018)*, pp. 159-166, IEEE Industrial Electronics Society, 2018.

[39] R. Lanotte, M. Merro and A. Munteanu. A Modest Security Analysis of Cyber-Physical Systems: A Case Study. In *38th IFIP WG 6.1 International Conference on Formal Techniques for Distributed Objects, Components, and Systems (FORTE'18)*. Volume 10854 of Lecture Notes in Computer Science, pp. 58-78, Springer, 2018.

[40] M. Kamali, M. Merro and A. Dal Corso. AODVv2: performance vs. loop freedom. In *44th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM'18)*. Volume 10706 of Lecture Notes in Computer Science, pp. 337-350, Springer, 2018.

[41] R. Lanotte, M. Merro and S. Tini. Compositional weak metrics for group key update. In *42nd International Symposium on Mathematical Foundations of Computer Science (MFCS'17)*. Volume 83 of LIPIcs series, pp. 72:1-27:16, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[42] R. Lanotte, M. Merro, R. Muradore and L. Viganò. A Formal Approach to Cyber-Physical Attacks. In *30th IEEE Computer Security Foundations Symposium (CSF'17)* IEEE Computer society, pp. 436-450, 2017.

[43] R. Lanotte and M. Merro. A Calculus of Cyber-Physical Systems. In *11th International Conference on Language and Automata Theory and Applications (LATA '17)*. Volume 10168 of Lecture Notes in Computer Science, pp. 115-137, Springer, 2017.

[44] R. Lanotte, M. Merro and S. Tini. Weak Simulation Quasimetric in a Gossip Scenario. In *37th IFIP WG 6.1 International Conference on Formal Techniques for Distributed Objects, Components, and Systems (FORTE'17)*. Volume 10321 of Lecture Notes in Computer Science, pp. 139-155, Springer, 2017.

[45] M.D. Ernst, D. Macedonio, M. Merro and F. Spoto. Semantics for Locking Specifications. In *8th NASA Formal Methods Symposium (NFM'16)*. Volume 9690 of Lecture Notes in Computer Science, pp. 355-372, Springer, 2016.

[46] R. Lanotte and M. Merro. A Semantic Theory of the Internet of Things (extended abstract). In *18th IFIP International Conference on Coordination Models and Language (COORDINATION'16)*. Volume 9686 of Lecture Notes in Computer Science, pp. 157-174, Springer, 2016.

[47] A. Dal Corso, D. Macedonio and M. Merro. Statistical Model Checking of Ad Hoc Routing Protocols in Lossy Grid Networks. In *7th NASA Formal Methods Symposium (NFM'15)*. Volume 9058 of Lecture Notes in Computer Science, pp. 112-126, Springer, 2015.

[48] A. Cerone, M. Hennessy and M. Merro. Modelling MAC-Layer Communications in Wireless Systems. In *15th IFIP International Conference on Coordination Models and Language (COORDINATION'13)*. Volume 7890 of Lecture Notes in Computer Science, pp. 16-30, Springer, 2013.

[49] L. Battisti, D. Macedonio and M. Merro. Statistical Model Checking of a Clock Synchronization Protocol for Sensor Networks. In *5th IPM International Conference on Fundamentals of Software Engineering (FSEN'13)*. Volume 8161 of Lecture Notes in Computer Science, pp. 168-182, Springer, 2013.

[50] D. Macedonio and M. Merro. A Semantic Analysis of Wireless Network Security Protocols. In *4th NASA Formal Methods Symposium (NFM'12)*. Volume 7226 of Lecture Notes in Computer Science, pp. 403-417, Springer, 2012.

[51] R. Lanotte and M. Merro. Semantic Analysis of Gossip Protocols for Wireless Sensor Networks. In *22nd International Conference on Concurrency Theory (CONCUR'11)*. Volume 6901 of Lecture Notes in Computer Science, pp. 156-170, Springer, 2011.

[52] F. Ballardin and M. Merro. A Calculus for the Analysis of Wireless Network Security Protocols. In *7th Workshop on Formal Aspects in Security and Trust (FAST'10)*. Volume 6561 of Lecture Notes in Computer Science, pp. 206-222, Springer, 2011.

[53] D. Benetti, M. Merro and L. Viganò. Model Checking Ad Hoc Network Routing Protocols: ARAN vs. endairA. In *8th IEEE Conference on Software Engineering and Formal Methods (SEFM'10)*, IEEE Computer Society Press, pp. 191-202, 2010.

[54] M. Merro and E. Sibilio. A Calculus of Trustworthy Ad Hoc Networks. In *6th International Workshop on Formal Aspects in Security and Trust (FAST'09)*. Volume 5983 of Lecture Notes in Computer Science, pp. 157-172, Springer, 2010.

[55] M. Merro and E. Sibilio. A Timed Calculus for Wireless Systems. In *3rd International Conference on Fundamentals on Software Engineering (FSEN'09)*. Volume 5961 of Lecture Notes in Computer Science, pp. 228-243, Springer, 2010.

[56] M. Merro. An Observational Theory for Mobile Ad Hoc Networks. In *23rd International Conference on the Mathematical Foundations of Program Semantics (MFPS'07)*. Electronic Notes in Theoretical Computer Science 173:275-293, Elsevier, 2007.

[57] M. Merro and C. Biasi. On the observational theory of the CPS-calculus. In *22nd International Conference on the Mathematical Foundations of Program Semantics (MFPS'06)*. Electronic Notes in Theoretical Computer Science 158:307-330, Elsevier, 2006.

[58] M. Merro and F. Zappa Nardelli. Behavioural Theory for Mobile Ambients. In *3rd International Conference on Theoretical Computer Science (IFIP TCS 2004)*, pp. 549-562, Kluwer, 2004.

[59] U. Nestmann, R. Fuzzati and M. Merro. Modeling consensus in a process calculus. In *14th International Conference on Concurrency Theory (CONCUR'03)*. Volume 2761 of Lecture Notes in Computer Science, pp. 399-414, Springer, 2003.

[60] M. Merro and F. Zappa Nardelli. Bisimulation proof techniques for mobile ambients. In *30th International Colloquium on Automata, Languages, and Programming (ICALP'03)*. Volume 2719 of Lecture Notes in Computer Science, pp. 584-598, Springer, 2003.

[61] M. Hennessy, M. Merro and J. Rathke. Towards a Behavioural Theory of Access and Mobility Control in Distributed System. In *6th International Conference on the Foundations of Software Science and Computation Structures (FOSSACS'03)*. Volume 2620 of Lecture Notes in Computer Science, pp. 282-297, Springer, 2003.

[62] M. Bugliesi, S. Crafa, M. Merro and V. Sassone. Communication Interference in Mobile Boxed Ambients. In *22th International Conference on the Foundations of Software Technology and Theoretical Computer Science (FST&TCS'02)*. Volume 2556 of Lecture Notes in Computer Science, pp. 71-84, Springer, 2002.

[63] M. Merro and V. Sassone. Typing and Subtyping Mobility in Boxed Ambients. In *13th International Conference on Concurrency Theory (CONCUR'02)*. Volume 2421 of Lecture Notes in Computer Science, pp. 304-320, Springer, 2002.

[64] M. Merro and M. Hennessy. Bisimulation Congruences in Safe Ambients. Conference record of *29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'02)*. Volume 37(1), pp. 71-80, ACM Press, 2002.

[65] M. Merro, J. Kleist and U. Nestmann. Local π -Calculus at work: Mobile Objects as Mobile Processes. In *1st IFIP International Conference on Theoretical Computer Science (IFIP TCS'00)*. Volume 1872 of Lecture Notes in Computer Science, pp. 390-408, Springer, 2000.

[66] M. Merro. Locality and Polyadicity in Asynchronous Name-passing Calculi. In *3rd International Conference on Foundations of Software Science and Computation Structures (FoSSaCS'00)*. Volume 1784 of Lecture Notes in Computer Science, pp. 238-251, Springer, 2000.

[67] H. Hüttel, J. Kleist, M. Merro e U. Nestmann. Aliasing Models for Object Migration. In *5th International EURO-PAR'99 - PARALLEL PROCESSING Conference*. Volume 1685 of Lecture Notes in Computer Science, pp. 1353-1368, Springer, 2000.

[68] M. Merro. On Equators in Asynchronous Name-passing Calculi without Matching. In *6th International Workshop on Expressiveness in Concurrency (EXPRESS'99)*. Electronic Notes in Theoretical Computer Science 27:57-70, Elsevier, 1999.

[69] M. Merro. On the Expressiveness of Chi, Update, and Fusion calculi. In *5th International Workshop on Expressiveness in Concurrency (EXPRESS'98)*. Electronic Notes in Theoretical Computer Science 16(2):133-144, Elsevier, 1998.

[70] M. Merro and D. Sangiorgi. On Asynchrony in Name-passing Calculi. In *25th International Colloquium on Automata, Languages and Programming (ICALP'98)*. Volume 1443 of Lecture Notes in Computer Science, pp. 856-867, Springer, 1998.

[71] A. Maggiolo-Schettini e M. Merro. Priorities in Statecharts. In *5th Workshop on Analysis and Verification of Multiple-Agent Languages (LOMAPS'96)*. Volume 1192 of Lecture Notes in Computer Science, pp. 404-429, Springer, 1996.

PhD thesis

[72] M. Merro. Locality in the pi-calculus and applications to distributed objects. *École Nationale Supérieure des Mines de Paris*. October 2000.

3 Teaching activity

Dr. Merro has more than 20 years of experience in university-level undergraduate and graduate teaching in Computer Science, at University of Verona, with responsibility of courses in the field of: Programming, Formal Languages, Programming Language for Distributed Systems, Network Programming, and Network Security.

3.1 Courses

Undergraduate:

- *Automata Theory*, 20h, University of Sussex, UK, (2000-2002)
- *Network and Distributed Programming*, 60h, Univ. Of Verona (2003-2013)
- *Human-machine interaction*, 20h, Faculty of Literature and Philology, University of Verona (2004-2005)

- *Basics in Informatics*, 24h, University of Verona (2006-2009)
- *Object-Oriented Programming*, 60h, University of Verona (2009-2010).

Graduate:

- *Concurrent and Mobile Languages*, 60h, University of Verona (2003-2009)
- *Semantics and Static Analysis of Programming Languages*, 56h, University of Verona (2010-)
- *Network Security*, 52h, University of Verona (2013-).

3.2 Stages, bachelor and master theses supervision

Dr. Merro has supervised (and revised) several industrial and academic stages, bachelor theses, and master theses. A number of these works have given rise to publications in international conferences or symposia. In particular:

- paper [38] extends and generalises some of the results appeared in the master thesis of Andrei Munteanu.
- paper [47] extends and generalises some of the results obtained during the stage and the bachelor thesis of Alice Dal Corso; some preliminary work was done during the stages of students Marco Campion and Giacomo Annaloro;
- paper [49] extends and generalises some of the results obtained during the stage and the bachelor thesis of Luca Battisti;
- paper [50] relies on some preliminary results obtained during the master thesis of Mattia Tirapelle.
- paper [52, 13] extends and generalises some of the results obtained during the stage and the bachelor thesis of Francesco Ballardin.
- paper [53] relies on the results appeared in the master thesis of Davide Benetti; Benetti's master thesis got a prize from Clusit (Associazione Italiana per la Sicurezza Informatica) in 2010;
- paper [57] extends and generalises some of the results of the master thesis of Corrado Biasi.

4 Institutional activity

- Coordinator of the PhD Program in Computer Science of Verona (2016-2022);
- President of the self-evaluation commission for the high quality of the master course in Computer Science and Engineering (2016-2019);
- Member of *Giunta del Consiglio di Dipartimento in Informatica di Verona*, (2009-2015 and 2019-);
- Member of *Collegio dei Docenti del Dottorato in Informatica di Verona*, (2003-);
- President of *Commissione Didattica, Laurea in Informatica ed Informatica Multimediale, Facoltà di Scienze MMFFNN dell'Università di Verona*, (2006-2013);
- Member of *Commissione Didattica del GRIN*, (2008-2011);
- Vice President of *Corso di Laurea in Informatica della Facoltà di Scienze MMFFNN dell'Università di Verona*, (2006-2012).